' of ab

wewWw’<eiTS s BYTES>
www.ccsinfo.com Newsletter

262-522-6500

INSIDE
THIS ISSUE:

Pg 1-3
Programmable Switch Mode
Controller

By: CCS Staff -— USB DEVELOPMENT KIT

Pg 3-5

Introduction to the EZ App Lynx This kit enables users to begin USB interface

Library development with Microchip’s PIC® PIC18 family.

By: CCS Staff The development kit includes the powerful PCWH
Integrated Development Environment with compiler

Pg 6-7 support for Microchip’s PIC® PIC10, PIC12, PIC16

ADC2 and PIC18 families and an ICD-U64 in-circuit

By: CCS Staff programmer/debugger that supports C-Aware real

time debugging.

Programmable Switch Mode Controller (PSMC)

By: CCS Staff

Pulse Width Modulation (PWM) capability was first added to the PIC® microcontroller line using the Capture/Compare/
PWM (CCP) unit. Since then we have seen the enhanced CCP (ECCP) and a variety of power and motor control PWM
modules each with its own features. The PWM module is called the Programmable Switch Mode Controller (PSMC). This
is the most sophisticated PWM yet and is on chips like the PIC16F1789.

The PSMC allows for standard PWM, complementary PWM, shutdown control and deadband control like some of the

support@ccsinfo.com sales@ccsinfo.com

older modules. It also allows for high resolution on the duty and frequency, as well variable frequency. It can for
example do 3 phase 6 step PWM.

Input pins, comparator outputs and CCP triggers can be used not only to control shutdown, but to control if the
PWM is running, or to start or stop a cycle.

Some PIC® MCU devices have as many as 4 independent units and the units can optionally be synchronized
with each other.

The compiler functions are:

setup psmc (unit, mode, period, period time,

rising edge, rise time,

falling edge, fall time);

psmc_pins (unit, pins used, pins active low);
psmc_duty(unit, fall time);

psmc_deadband(unit, rising edge, falling edge);
psmc_blanking (unit, rising edge, rise time, falling edge, fall time);
psmc_shutdown (unit, option, source, pins high);

psmc_freqg adjust (unit, freg adjust);
psmc_modulation(unit, options);

psmc_sync(slave unit, master unit, options);

The following is a short example program that shows off some of the features:
#include <16f1789.h>

#use delay(osc=20mhz)

#define us (time) (intl6) (time* (getenv (“CLOCK”)/1000000))
volid main (void) {

setup psmc(l, PSMC ECCP BRIDGE FORWARD,

PSMC EVENT TIME | PSMC SOURCE FOSC | PSMC DIV 2, us(100),
PSMC EVENT TIME, us(10)

PSMC EVENT TIME, us(35));

psmc_deadband (1, us(2), us(4));

psmc_modulation(l, PSMC MOD IN PIN);

psmc_pins (1, PSMC A | PSMC B | PSMC C | PSMC D);

setup adc (ADC CLOCK INTERNAL) ;

setup adc_ports (sANO) ;

set adc channel (0) ;

while (TRUE) {
psmc_duty (1, us(((read_adc()*(int16)10)/25)))

2

168 .80us/ & 2 .06l

Freq=28.08kHz +Dufu=36.8% . +Dutu=64.8%

CHl= Z.00l)/ ke 2 .08/

Other examples are included with the compiler download and begin with EX_PSMC _

PIC® MCU, are registered trademarks of Microchip Technology Inc. in the U.S. and other countries.

Introduction to the EZ App Lynx Library
By: CCS Staff

The EZ App Lynx compiler library, Android Application, and iOS Application can add some neat capabilities to
your PIC® MCU project. With a Bluetooth® interface, this allows a user’s embedded project to interface to a
smart device

The technique used to do this does not require to write an app for the phone. In the above diagram, the micro
sends the text to display on the initially blank screen. It then requests a button be put on the screen. The
generic app available from CCS simply does anything the PIC® MCU tells it to.

The same certified app available in the smart device stores (for free) can be used for any number of PIC® MCU
programs. Each program makes the display and operation it's own. Graphics and logs can be sent to the
smart device or you can required the app download the images from the web.

8 ox-eemp mages

Image Example

P oot
o

Custom Computer Services, Inc.

o

At the PIC® MCU, a simple library is used call EZ APP LYNX and is included with all IDE compilers. An
example program looks like this:

volid main (void) {
ezapp_ field index t pot;
EZAppInit () ; //E7Z App Lynx API

pot = EZAppAddFieldAnalogValueScaled (
“POT_Al”,
EZAPP_ANALOG TYPE GAS_ GAUGE,
0, //min
1023, //max
330, //scaling
2 //decimal points, 3.30
) ;

for(;;) |
EZAppTask() ; //EZ App Lynx API to keep Bluetooth up
EZAppSetValue (pot, read adc());
}

The library has a number of buttons, indicators, sliders and much more. Here is an example inserting a
background on the smart device display:

!Bankgr-nunds. Example

LEDS: ROFF YOFF | GOFF H|

reavs: "OEE ™ "OFE™

Charts and graphics are easy to do as well:
An easy way to get started is using the development kit that includes a plug in Bluetooth® module, ready to
start communicating with a smart device.

Graphing Example

w
2w
8
B
g
B
O 2

“

Thermistor

Time

Potentiometers

ADC Val

210

Potentiometer

More information about EZ App Lynx, visit: http://www.ccsinfo.com/content.php?page=ez-app

PIC® MCU, are registered trademarks of Microchip Technology Inc. in the U.S. and other countries.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Bluegiga Technologies is under license. Other trademarks and trade names are those of their
respective owners.

ADC2

By: CCS Staff

Microchip has some chips out that they call ADC2. This is the ADC module with a computational unit. In addition to legacy mode of
operation, the ADC2 module can be setup in Accumulate, Average, Burst Average or Low-Pass Filter modes of operation. When setup
for Accumulate mode with each trigger of the ADC, the conversion result is added to the accumulator and the ADCNT register is incre-
mented. When setup for Average mode with each trigger of the ADC the conversion result is added to the accumulator and when the
specified number of triggers has been done, the average will be preformed on the accumulator. When setup for Burst Average mode, it
is similar to Average mode the difference being that when the ADC is triggered, it will perform the specified number of conversions and
then perform the average calculation. When setup for Low-Pass Filter mode with each trigger of the ADC, the conversion result is sent
through the filter.

To support these modes of operation, the CCS C Compiler’s built-in setup_adc() function has an optional 2nd and 3rd parameter to
set some parameters when using these the new modes of operation. When using Accumulate, Average or Burst Average modes the
2nd parameter sets how much the accumulated value is divided by after each conversion. When using Low-Pass Filter mode the 2nd
parameter sets the cut-off frequency of the filter. The 3rd parameter to the function sets the number of samples to be done before
performing a threshold comparison for Average, Burst Average and Low-Pass Filter modes of operation.

In addition to the updates to the setup_adc() function, the built-in functions adc_write() and adc_read() have been added to write and
read some the other registers used by the ADC2 module. For example when setup for Low-Pass Filter mode, the filtered result is
stored in the ADFLTRH and ADFLTRL registers. After the calculation is completed the adc_read() function can be then be used to read
the filtered result, for example:

Result = adc read (ADC FILTER);

Another feature of the ADC2 module is the ability to set a trigger source to start a conversion. To support this feature the built-in func-
tion set_adc_trigger() has been added to the CCS C Compiler. For example the following can be used to setup the ADC2 module to
trigger the conversion when Timer 2 period match occurs:

set_adc_trigger(ADC_TRIGGER_TIMERZ);

The following is an example using the CCS C Compiler to setup and use the ADC2 module for Low-Pass Filter mode, see ex_lowpass_
filter_adc2.c in the PICC\Examples folder for entire example:

setup timer 2 (T2 CLK_INTERNAL | T2 DIV BY 128, 155, 10);
//~10ms period, 100ms interrupt

setup adc ports (ADC PIN, VSS VDD);

Setup_adc(ADC_LOW_PASS_FILTER_MODE | ADC CLOCK_ INTERNAL |
ADC_TAD MUL 255 | ADC_THRESHOLD INT END OF CALCULATION,
FILTER CUT OFF FREQ, ADC_READINGS);

set adc channel (ADC_CHANNEL) ;
set_adc_trigger(ADC_TRIGGER_TIMERZ);

while (TRUE)

{
if (interrupt active (INT AD THRESHOLD))

{
FilteredResult= adc read(ADC FILTER);

clear interrupt (INT AD THRESHOLD) ;

Conditioning ADC data has become a standard requirement for dealing with analog voltages. Even a small amount of noise can disrupt
your application. The ADC2 modules can save a lot of processing time to automate the most common filtering operations. See the
ex_adc2_trigger.c example program in the compiler example directory for a full program.

sws'COMPILER
®

EEATIIDE EAM~IIS
I il Wik T WY W

m Fidin [T [T Comgple e ST Mebiag Duremes 1 o Toodhisi

%2 ¢ O @ e

Cormme Echice CigmesTalecice e Comparn B Cade Brofls Dpsammble Dabsin [[pisdes Comprer CC5Lowd

Code Profiler

The Code Profile feature in the Tool Menu runs a program and provides statistics abowt how
often functions are called, how much time is spent in them, the call order and much more.

Count Min Awe Fax

e [[

inik_hardware() L 14dms | 19315 14dms
gather_mputs() I I9Tms | 39.9ms | 40.0ms
read adc_pins() Bl 16.9Ts | 19.0ms = 19.2ms

oet_flbered adc_input 120 AFESs | B3ilus SERSLS

USB Development Kit

- USB Prototyping Board
- In-Circuit Debugger/ Programmer

- Exercise Tutorial
- 9V AC Adapters and Cables

sales@ccsinfo.com ' '-

262-522-6500 EXT 35
www.ccsinfo.com/NL521 “-

Spring into Coding Projects with a
C CO m p | I er A

$25 Off a Full Compller or
Compiler Maintenance

More than 25 years experience in
software, firmware and hardware
design and over 500 custom embedded
C design projects using a Microchip
PIC® MCU device. We are a recognized

Microchip Third-Party Partner.
> / Follow Us!

