
<Bits & Bytes>
NewsletterJu

ne
 2

02
1

INSIDE
THIS ISSUE:

 PRODUCT SPOTLIGHT

www.ccsinfo.com

support@ccsinfo.com

262-522-6500

sales@ccsinfo.com

Pg 1
Product Spotlight: Rapid 18
Development Kit

Pg 2
Extreme Code Optimizer
By: CCS Staff

Pg 3-6
Optimize Code Using Fixed-
Point instead of Floating
point with the CCS C
Compiler
By: CCS Staff

Pg 6-9
C++ Like Console Stream
Operator Support
By: Mark Siegesmund

Pg 10
Coupons and Additional
Information

INSIDE
THIS ISSUE:

Rapid 18 Development Kit
This easy-to-use PIC18 family development kit has a built-in bootloader for loading
code and a USB port for text communication to the running program. Microchip’s
PIC18F4523 provides advanced peripherals including a 12-bit ADC. The development
kit includes the powerful PCWH Integrated Development Environment with compiler
support for Microchip’s PIC10, PIC12, PIC16 and PIC18 families and an ICD-U64 in-circuit
programmer/debugger that supports C-aware real time debugging.

2

................ input_number_volts(&n);
781C: MOVLW 01
781E: MOVLB 1
7820: MOVWF xBB
7822: MOVLW B6
7824: MOVWF xBA
7826: MOVLB 0
7828: CALL 661C
 . . .
................ input_number_amps(&n);
7882: MOVLW 01
7884: MOVLB 1
7886: MOVWF xBB
7888: MOVLW B6

6E92: MOVLW 01
6E94: MOVLB 1
6E96: MOVWF xBB
6E98: MOVLW B6
6E9A: MOVWF xBA
6E9C: MOVLB 0
6E9E: RETURN 0
 . . .
................ input_number_volts(&n);
6B5C: RCALL 6E92
6B5E: CALL 5DDC
 . . .
................ input_number_amps(&n);
6BB0: RCALL 6E92

CCS, Inc. If you have a version 5 compiler there is an optimization feature you may not be aware of. For
many chips ther is a aggressive code optimizer available, optimizing for space instead of speed. The optimizer
is able to search the entire compiled program to find repeating blocks of code whereby reducing all those
repeating blocks into one shared sub-routine. Optimizer is executed during the final phase of the compile which
presents the ability to cross a function boundary when performing the optimization. This can only be done on
parts with a flexible call instruction and available stack, for example the PIC18 and PIC24 families of devices.

This optimization level can be achieved by adding this line of code into your project.
 #opt compress

The average size reduction of program memory is approximately 15%. In some cases we have
seen program memory reduced by 60%. Provided below are examples of compression levels:

Consider this example. When a program that passes &n seven times to two functions and the code needed to
do that takes 6 instructions. On the right we show the normal optimization and on the right #opt compress.

For more information on other advanced Version 5 features please visit: www.ccsinfo.com/version5.

788A: MOVWF xBA
788C: MOVLB 0
788E: CALL 67F4
 . . .
................ input_number_amps(&n);
78CA: MOVLW 01
78CC: MOVLB 1
78CE: MOVWF xBB
78D0: MOVLW B6
78D2: MOVWF xBA
78D4: MOVLB 0
78D6: CALL 67F4

 (four more not shown)

6BB2: CALL 5F7C
 . . .
................ input_number_amps(&n);
6BE8: RCALL 6E92
6BEA: CALL 5F7C
 . . .
................ input_number_amps(&n);
6C20: RCALL 6E92
6C22: CALL 5F7C

 (three more not shown)

Extreme Code Optimizer
By: CCS Staff

3

Most embedded microprocessors and microcontrollers, including the Microchip PIC® MCU families,
do not contain a hardware implemented floating-point calculator. This means that all float calculations
must be implemented in software using integer arithmetic, which is very resource intensive. In turn,
performance heavy applications and resource limited platforms may be unable to utilize floating point
numbers in their implementation. The solution for this is to instead use fixed-point arithmetic, which
is simplified by the CCS C Compiler’s fixed type feature.

Fixed-point arithmetic is an implementation that uses a scaling factor to represent decimal numbers in
integer form. The CCS C Compiler implements this using 16 or 32 bit integers and a scaling factor of
10-n. A fixed type can be declared as follows:

int16 _fixed(n) foo; where 0 < n < 6
int32 _fixed(n) foo; where 0 < n < 11

The value n determines the number of decimal places of accuracy the variable will contain, as well as
the maximum representable value. Since n is part of the type and determines what instructions are
generated, it must be given as a constant at compile time.

For int16 _fixed(2) : Max = 65,535 * 10-2 = 655.35
For int32 _fixed(5) : Max = 4,294,967,295 10-5 = 42,949.67295

Optimize Code Using Fixed-Point instead of Floating point with the CCS C Compiler
By: CCS Staff

4

The binary/hexadecimal representation for any number can then be determined by multiplying by the
inverse of the scaling factor and converting.

237.16 * 10-2 = 23716 = 0x5CA4

The fixed type is compatible with another fixed type of the same n for the 4 basic arithmetic
operations. They are not compatible with fixed types with a different n.

int16 _fixed(1) f1 = 5.5;
int16 _fixed(1) f2 = 2.5;
f1 + f2; //evaluates to 8.0
f1 - f2; //evaluates to 3.0
f1 * f2; //evaluates to 13.7
f1 / f2; //evaluates to 2.2

It can also perform arithmetics with literals and cast integers.

int16 _fixed(2) f1 = 22.14;
int16 i1 = 7;
f1 + 19.52; //evaluates to 41.66
f1 - (int16 _fixed(2)) i1; //evaluates to 15.14

The increment and decrement operations function the same in binary. This equates to adding or
subtracting 1 times the scaling unit.

int16 _fixed(3) f1= 5.234;
f1++; //f1 = 5.235

Casting a fixed type to an integer will truncate the decimal places. This can also be used to isolate the
digits after the decimal by subtracting the integer cast from the original.

int16 _fixed(2) f1 = 6.94;
int16 noDec = (int16) f1; //noDec = 6
int16 _fixed(2) decOnly = f1 - noDec; //decOnly = 0.94

The CCS C Compiler also supports using printf, sprintf, etc. with the fixed-point type using the “%w”
format flag. It will print the value with no leading zeroes and digits after the decimal equal to the
precision.

Code:
int16 _fixed(2) f1 = 1.5;
int16 _fixed(2) f2 = 22.78;
int16 _fixed(3) f3 = 5.21
printf(“%w - %w - %w”, f1, f2, f3);

Output:
1.50 - 22.78 - 5.210

5

Floating-point numbers have an inescapable error when representing decimal in which expressions
that should evaluate to be equal will be off at a very low decimal point. This happens because some
decimal numbers in base10, such as 0.1, cannot be perfectly represented in base2, thus causing a
rounding error. This is similar to how 1/3 cannot be represented in base10 and is then rounded to
0.33... to whatever precision is needed. Since the CCS C Compiler’s implementation of fixed-point
uses a decimal scalar, there is 100% precision in base10. This makes it perfect for handling money
and other values where this precision is necessary.

Fixed-point operations yield significant performance increases over floating-point. In order to quantify
this, benchmarks were performed using a PIC18F45K22 and the CCS C Compiler. One of the on-chip
timers was used to approximate the amount of time an arithmetic operation took. For both floating-
point and 16 bit fixed-point at 2 places accuracy, each operation was timed and averaged 50 times on
a spread of values. The average times for each could then be compared to generalize performance.

The benchmarking results are as follows:

• Add (+): Fixed ~19.6 times faster than float.
• Subtract (-): Fixed ~19.4 times faster than float.
• Multiply (*): Float ~2.7 times faster than fixed.
• Divide (/): Fixed ~3.3 times faster than float.

The only operation that floating-point performs better is multiplication. This is logical since floats are
stored in a multiplicative form (significand x baseexponent). However, fixed-point performs better on
the other three, particularly on addition and subtraction.

There is also a program memory usage difference between implementing fixed-point and floating-
point. The actual number of instructions it takes to implement the arithmetic operations is significantly
different for both. The following program was compiled using both options for the PIC18F45K22.

#ifdef USE_FIXED
int16 _fixed(2) a, b, c;
#else
float a, b, c;
#endif

void main() {
a = 2.25;
b = 0.85;
c = a + b;
printf(“Add: %w”, c);
c = a - b;
printf(“Subtract: %w”, c);
c = a * b;
printf(“Multiply: %w”, c);
c = a / b;
printf(“Divide: %w”, c);
}

6

The compiled program’s memory statistics were as follows.
Fixed Option:

• 364 instructions
• 0.84KB ROM usage
• 2.6% ROM usage

Float Option:

• 787 instructions
• 2.03KB ROM usage
• 6.3% ROM usage

Switching from the fixed implementation to float increased the instruction count by over 400. This
may or may not be significant on the PIC18F45K22, depending on program complexity. However, at
32KB of ROM, it is on the higher end in terms of program memory. On the more limiting units in the
PIC18 family, this would be an extremely significant amount of space or may not be significant on
the PIC18F45K22, depending on program complexity. However, at 32KB of ROM, it is on the higher
end in terms of program memory. On the more limiting units in the PIC18 family, this would be an
extremely significant amount of space.

In standard C, basic I/O are handled by functions like getc(), putc() and printf() and the
formatting of data is handled by functions like atoi(), atof(), strotul() and sprintf(). For
example, reading a floating point number from the user over RS232 would require a combination
of gets() followed by atof(). While CCS includes an input.c library that accomplishes many of
these tasks, the input.c library uses a fixed RS232 stream and does not work with Keypad/LCD or
USB without modification. CCS has added some support for the C++ stream operator to make it
easier to handle routine user input and output.

One of the key features of this new feature in the CCS C Compiler is the way it automatically handles
the conversion based upon the data types of the variables passed. These conversions are done
automatically, no other helper functions like atof() need to be called. For example, if a variable is of
float type the compiler will properly convert it from string to float on an input or convert float to string
on an output.

The two new operators added are the extraction operator and the insertion operator:
Operator Symbol
Operator Name

C++ Like Console Stream Operator Support
By: Mark Siegesmund

7

When used, these operators show the direction of data. For example:

The beauty of these operators is that the x and y in the above examples can be any combination of
function, RS232 serial stream, variable, string and more.

Using the stream operator for output
Simple examples:
 int16 v16;
 v16 = 1234;
 cout << v16; // Outputs 1234
 cout << hex << v16 << eoln; // Outputs 4D2 \r\n

Formal definition:
stream << expresion [<< expresion]...
stream in the above example can be one of the following:

• cout - maps to the default #use rs232() stream. This provides compatibility for using existing C++
code that explicitly uses the cout stream class.

• RS232 stream name - A stream identified with the stream=x option of #use rs232().
• char array (string) - Data is parsed from identifier and saved to the char array with a null

terminator.
• function - A function that takes a char for it’s input variable. For example, lcd_putc() in

CCS’s lcd.c driver or usb_cdc_putc() in CCS’s usb_cdc.h driver. The function is called for each

expresion can be can be an int, float, fixed point decimal, int1 (boolean) or char array (string).
expresion can also be any of the following manipulators (from ios.h):

• hex - When converting variable to string, convert it to hex format characters (similar to %x
in printf()).

• dec (default) - When converting variable to string, convert it to decimal format characters (similar
to %d in printf())

• setprecision(x) - set number of places after the decimal point.
• setw(x) - set number of characters output for numbers
• boolalpha - output int1 as “true” or “false”
• noboolalpha (default) - output int1 as “1” or “0”
• fixed (default) - floating point numbers displayed in decimal format (similar to %f in printf())
• scientific - floating point numbers displayed in E notation (similar to %e in printf())
• iosdefault - all modifiers back to default settings
• endl - output CR/LF

8

Here is a fuller example usage of this operator:

cout << “Price is $” << setw(4) << setprecision(2) << cost*num << endl;

This example transmits “Price is $” followed by the result of cost*num with two decimal places
followed by the CR/LF. This is transmitted using cout, which is the default RS232 stream.

Here is a change to the above example to display on the LCD using the lcd_putc() function provided
in CCS’s lcd.c driver:

lcd_putc << “Price is $” << setw(4) << setprecision(2) << cost*num
 << endl;

Here is a change to the above example to save the formatting to a string variable called result_string:

result_string << “Price is $” << setw(4) << setprecision(2) << cost*num
 << endl;

Using C++ stream operator for input

stream >> identifier [>> identifier]...
stream in the above example can be one of the following:

• cin - maps to the default #use rs232() stream. This provides compatibility for using existing C++
code that explicitly uses the cout stream class.

• RS232 stream name - A stream identified with the stream=x option of #use rs232().
• function - A function that returns a char. For example usb_cdc_getc() in CCS’s usb_cdc.h driver.

This function is called for each character, until a \r is received.
•
identifier can be a variable that is integer, char, char array, float or fixed point integer type. Float type
formats can use the E format.
identifier can be any of the following manipulators:

• hex - hex format numbers
• dec (default) - decimal format numbers
• strspace - allow spaces to be input into strings
• nostrspace (default) - spaces terminate string entry
• iosdefault - all manipulators to default settings.

Here is an example of reading a number from the user and saving it to the variable value:

 cout << “Enter Number”;
 cin >> value;

The above example can be quickly modified to read from the USB virtual COM port using the routines
in CCS’s usb_cdc.h driver:

9

 usb_cdc_putc << “Enter Number”;
 usb_cdc_getc >> value;

Several values can be read at a time:

 cin << variable1 << variable2 << variable3;

In the above example, the input operator would stop reading into variable1 and start reading
into variable2 once a character is received that is not valid for that data type. For instance,
if variable1 and variable2 are both int, it would stop reading into variable1 and start reading
into variable2 upon the reception of any character that isn’t “0” to “9”, like a space or new-line.

Data conversion from a string to a variable can also be achieved. This example converts the str
string variable to the val variable. The type of conversion is determined by the data type of val:

 str >> val;

10

Follow Us!

More than 25 years experience in
software, firmware and hardware
design and over 500 custom embedded
C design projects using a Microchip
PIC® MCU device. We are a recognized
Microchip Third-Party Partner.

 www.ccsinfo.com

Summer is for C Compiler Savings

$25 Off a Full
Compiler or

Compiler
Maintenance

Use Code:Summer2021

USB Development Kit

• USB Prototyping Board
• In-Circuit Debugger/ Programmer
• Exercise Tutorial
• 9V AC Adapters and Cables

sales@ccsinfo.com
262-522-6500 EXT 35

www.ccsinfo.com/NL521

Includes

