
Touch Display 4.3
Development Kit!

TECH NOTE: How to Block Critical Code from Interrupts
TECH NOTE: Compiler Feature Highlight
TECH NOTE: Event-driven Programming Using the Timeouts Library
TECH NOTE: CAN FD Support in Compiler

June 2020

Email:
support@ccsinfo.com
sales@ccsinfo.com
Ph: 262-522-6500

New Compiler Versions
>Downloads>Compiler Software

Easy License Renewal
>Support>Renewalswww.ccsinfo.com

It is quite common for an interrupt handler to save or alter data that can be accessed from your non-interrupt
code. Doing this does require some care, otherwise the interrupt code might alter the data in the middle of the
non-interrupt code dealing with the data. Look at following example:

WORD g_Timer1;

#int_timer1
void isr_timer1(void)
{
 g_Timer1++;
}

int1 check_timer(void)
{
 int1 ret = 0;
 if (g_Timer1 > 500)
 {
 g_Timer1 = 0;
 ret = 1;
 }
 return ret;
}

WORD is a type that takes multiple instructions of the architecture to modify, for example an int16 on an 8-bit
architecture. If the Timer1 interrupt fired in the middle of check_timer() clearing g_Timer1, would result in a
state where the interrupt would increment a half cleared g_Timer1. A common solution for this problem is to
pause interrupts while handling this data. Here is an example of check_timer() updated to temporarily pause
interrupts while handling data that could be modified in the ISR:

int1 check_timer(void)
{
 int1 ret = 0;
 disable_interrupts(GLOBAL);
 If (g_Timer1 > 500)
 {
 g_Timer1 = 0;
 ret = 1;
 }
 enable_interrupts(GLOBAL);
 return ret;
}

Unfortunately, the solution presented in the above modification to check_timer() can fail in a few situations:

• If check_timer() is called in another interrupt, where interrupts have been disabled by the hardware, then it
will re-enable the interrupt while inside an interrupt. This can cause a disaster where an interrupt interrupts
an interrupt, not something all microcontroller architectures can handle.

• If check_timer() is called when interrupts were disabled, then check_timer() would accidentally enable the
interrupt when it is not wanted to be enabled. This can easily happen if check_timer() is used in a library
shared in several projects, including projects where interrupts are not used.

• If check_timer() is called when interrupts were already paused for another series of instructions, check_
timer() would then re-enable them before the calling function would have finished their operations expecting
interrupts to be disabled.

How to Block Critical Code from Interrupts

CCS has a library for pausing interrupts that solves all three of the above problems: critical.h. Here is an
example of using critical.h with the previous example:

#include <critical.h>

int1 check_timer(void)
{
 int1 ret = 0;
 CRITICAL_SECTION_ENTER();
 If (g_Timer1 > 500)
 {
 g_Timer1 = 0;
 ret = 1;
 }
 CRITICAL_SECTION_EXIT();
 return ret;
}

CRITICAL_SECTION_ENTER() saves the previous state of the global interrupt enable and is restored by
the CRITICAL_SECTION_EXIT(). That means if CRITICAL_SECTION_ENTER() is called when interrupts
were not enabled, then CRITICAL_SECTION_EXIT() does not have enable interrupts. The CCS C Compiler
does something similar internally to prevent recursion on architectures that do not allow recursion. When this
occurs, a warning that states “Interrupts disabled to prevent recursion.” Now this method can be applied to
critical sections of code where data is being modified by the interrupts that also need access to outside of the
interrupt.

CCSC provides an Encrypt feature in the File menu that will
encrypt an include file so it can be distributed and used by
others without disclosing the file contents.

Keep the
contents of your
files protected!

Product Spotlight
Touch Display 4.3 Development Kit

Development Kit includes:
•	 Full-Featured Single-Chip IDE C

Compiler
•	Touch Display PRototype Baord
•	 ICD-U Programmer/Debugger
•	 Exercise Book and Cables

Easily develop a Graphical User
Interface (GUI) using a graphics

LCD and touch display

www.ccsinfo.com/product_info.php?products_id=touch-kit

The new Touch Display 4.3 Development Kit is all that is needed to develop a GUI using the Graphics and
Touch Library. Powered by a PIC24EP512GU810 it has a 4.3" 480x272 TFT display with a resistive touch-
screen, a 256 megabyte flash, capable of storing hundreds of 480x272 images and custom fonts, a USB con-
nection and 8 digital I/O pins that can be used for external inputs and outputs. No device programmer required
- includes onboard programming capabilites.

Included is a software IDE to draw out a
GUI and the C library for drawing graphics
and handling touch.

• Draw an Image
• Draw an Object
• Handle Touch

Interface Designer (GUI)

Event-driven Programming Using the Timeouts Library

In a multitasking environment using state machines, it is quite common to poll for events that may have hap-
pened, and then go to a state based on which event that happened. For example, a push-button and LCD GUI
polling the button to see if it is pressed, or polling to see if a time has expired to change or refresh what is on
the LCD screen. If a polling scheme is used, eventually one may find that as the program gets bigger, that it
spends most of its time polling for events that rarely happen. By switching to event-driven programming, one
can create a callback that is instead called when an event happens that needs to be processed. The CCS C
Compiler provides a portable callback library, timeouts.c. The following is a simple LCD GUI example using
the the timeouts library:

#include <timeouts.c>

// debounce button, on debounce send event
void ButtonDebounceOnTimeout(void *pArg)
{
 if (BUTTON_PRESSED())
 {
 if (++pArg == 4)
 { // debounced, send event
 TimeoutsRemove(LCDGUIOnTimeout, NULL);
 TimeoutsImmediate(LCDGUIOnTimeout, 1);
 }
 }
 else
 pArg = 0;
 TimeoutsAdd(ButtonDebounceOnTimeout, pArg, 16);
}

// handle button press or periodically refresh the screen
void LCDGUIOnTimeout(void *pArg)
{
 static int screenIndex;

 if (pArg)
 {
 if (++screenIndex > 4)
 screenIndex = 0;
 }

 switch(screenIndex)
 {
 case 0: ShowLCDGUIScreen0(); break;
 case 1: ShowLCDGUIScreen1(); break;
 case 2: ShowLCDGUIScreen2(); break;
 case 3: ShowLCDGUIScreen3(); break;
 }

 TimeoutsAdd(LCDGUIOnTimeout, 0, 333); //refresh
}

// init button debouncer and screen handler.
void LCDGUIInit(void)
{
 TimeoutsImmediate(ButtonDebounceOnTimeout, 0);
 TimeoutsImmediate(LCDGUIOnTimeout, 0);
}

Check out the popular CCS Programmer / Debuggers

LCDGUIInit() calls TimeoutsImmediate(), which places functions onto the timeouts callback stack to be
called. The first parameter of TimeoutsImmediate() is the function that is to be called, and must match the
prototype void function_name(void *). The library will create a pointer to that function and push it onto the
stack. The second parameter of TimeoutsImmedate() is the parameter that is passed to the function when the
timeouts library is called. Since this parameter is of type void*, it could either be pointer to state variables, or
it could be just used as a int. In the examples shown here it is simply used as an int, to hold an int variable
from one call to the next. That means what LCDGUIInit() is doing is pushing ButtonDebounceOnTimeout and
LCDGUIOnTimeout to be called, to be passed a value of 0.

ButtonDebounceOnTimeout() will debounce the button. BUTTON_PRESSED() would be a hardware de-
pendent macro that returns true if the button is currently held down. In this example, if BUTTON_PRESSED()
returns true a counter is incremented and if the counter is incremented a fourth time it will then use the time-
outs library to call LCDGUIOnTimeout() with a parameter of 1. At the end of ButtonDebounceOnTimeout(),
TimeoutsAdd() is then used to push ButtonDebounceOnTimeout() to be called again in 16 milliseconds. That
means ButtonDebounceOnTimeout() is called every 16ms, and it takes 64ms of debouncing before a button
pressed event is sent. Since the pArg is passed back to the repeat call of ButtonDebounceOnTimeout(), it can
be used as a state variable of this function to measure how many times the button was held. If you look ahead
to the LCDGUIOnTimeout(), you will see that it pushes itself back onto the timeouts call stack every 333ms to
refresh the screen; for this reason ButtonDebounceOnTimeout() is doing a TimeoutsRemove() to remove all
other calls to LCDGuiOnTimeout() so the only even that is going to be called is a button press event.

LCDGuiOnTimeout() will either handle a button event or redraw the screen depending on the pArg passed to
it. In this example a pArg of 1 is a new button, in which case it goes to the next screen. If pArg is a 0 then it’s
a screen refresh, just redraw the current screen. At the end of LCDGUIOnTimeout() a TimeoutsAdd() is used
to push another call to LCDGuiOnTimeout in 333ms, meaning the screen is redrawn 3 times a second.
What isn’t shown in the above example is the main loop, which must call TimeoutTask(). TimeoutTask() looks
at the top of the call stack, and if it’s expiration has expired it then calls that function. Functions that add to the
call stack always keep the call stack sorted so the top element, the one being checked, is always the next to
expire. That means TimeoutTask() only needs to poll one task, regardless of how many elements are pushed.

This library can also be used in some other situations:
• Interrupts can push a function to be called on the main loop, to prevent execution of lengthy or low priority

code to be running in an interrupt.
• If completely using an ISR and timeouts library based design, the processor could be put to sleep until the

next event. The timeouts library has a function, TimeoutsNext(), which tells you how long until the next
event. The processor could be put to sleep for that duration, as long as it’s configured so interrupts will
wake it.

• Diagnostic and metrics could be added to TimeoutTask() to measure how long each event takes, to find or
debug certain events that take too long to execute.

CAN FD Support in CCSC

CAN FD Support in CCSC

The CCS C Compiler now supports sending and receiving CAN FD messages over the CAN Bus. This sup-
port is from the addition of two new drivers that compiler now comes with. The can-dspic33_fd.c driver is for
dsPIC33CH and dsPIC33CK devices with a built-in CAN FD peripheral and the can-mcp2517.c driver is for a
MCP2517FD external CAN FD controller. The MCP2517FD external CANFD controller uses an SPI interface
to communicate, so it can be used with any PIC® microcontroller.

The CAN FD stands for CAN Flexible Data-Rate, the main improvements of CAN FD over CAN 2.0 is that the
data rate switches to a faster rate after the arbitration bits are sent, and the maximum data packet size is in-
creased from 8 bytes to 64 bytes. Both of this improvements allow for more data to be transferred in less time,
increasing the throughput of the CAN Bus.

The CAN FD driver API was made to be as similar as possible to the current CAN driver provided in the CCS
C Compiler. The CAN FD driver API is fully documented in the driver's .h files, however the following function
will mostly likely be used in any CAN FD project being developed, can_init(), can_kbhit(), can_getd() and can_
putd(). The can_init() function is used to initialize the peripheral and setup the baud rate, filters and objects
used by the driver, this function also accepts an optional parameter to select what operation mode the CAN FD
peripheral will be operating in when the function call is complete. The can_kbhit() function is used to check if
any CAN messages were received by the RX object. The can_getd() function is used to retrieve received mes-
sages from the RX object. Finally the can-putd() function is used to load a message into the TX object to be
sent on the CAN Bus.

Additionally to make is easier to setup the CAN FD peripheral the CAN FD driver as multiple preproccessor de-
fines that can be made before the driver is included. The full list of the defines that can be made and their de-
scriptions, including the default values, can be found in the driver's .h file. Some of the more common defines
that will most likely be used are CAN_NOMINAL_BAUD_RATE, CAN_DATA_BAUD_RATE, CAN_TX_BUF-
FERS and CAN_RX_BUFFERS. The defines CAN_NOMINAL_BAUD_RATE and CAN_DATA_BAUD_RATE
are used to set the bit rate used with CAN FD message frames during the arbitration and data periods respec-
tively. The only requirements are that the CAN_CLOCKS_SPEED define must be evenly divisible by the rates,
and the max CAN_NOMINAL_BAUD_RATE is 1,000,000 and the max CAN_DATA_BAUD_RATE is 8,000,000.
For the built-in CAN FD peripheral the define CAN_CLOCK_SPEED is used to set the clock being presented
to the peripheral. There are multiple ways the clock can be setup, see the can-dspic33_fd.h file for all options.
By default the driver is setup to use the auxiliary clock setup for a speed of 80MHz. For the MCP2517FD con-
troller the define CAN_CLOCK_SPEED is made automatically based on the define MCP2517_EXT_CLOCK_
SPEED which is the speed of the external crystal connected the controller. Only a 4MHz, 20MHz or 40MHz
crystal can be used with it, by default the driver is set to use a 20MHz crystal. The define CAN_TX_BUFFERS
sets the size of the TX Queue object used to send messages, the number of messages that can be held in
RAM to be sent on the CAN Bus. It can be set from 0 to 32, 0 disables the TX Queue object, the default size if
1. The define CAN_RX_BUFFERS sets the size of the FIFO 1 object which is setup as a receive FIFO by the
driver, the number of received messages that can be held in RAM. It can be set from 0 to 32, 0 disables the
FIFO 1 object, the default is 32 for the built-in CAN FD peripheral, and 16 for the MCP2517FD controller.

Finally a new CAN FD development kit will soon be available from CCS which contains a node with a dsPIC-
33CH128MP506 for using the can-dspic33_fd.c driver, and a node with the MCP2517FD external controller
for using the can-mcp2517.c driver. In addition to the hardware the development kit comes with an exercise
manual that has examples of using more of the CAN FD features, including setting up and using CAN filters,
using multiple FIFO objects and using the CAN FD interrupts.

During this time of global uncertainty and change, we want to assure you that we are taking every
precaution to ensure that we can safely support our customers during this time.

Despite these challenges, CCS staff is continuing to provide technical support, as well as processing
orders. It is essential customers have the tools they need to provide the development of existing or
new products that may be necessary in the fight of Covid-19.

Many of our existing customers are having to work from home and we want to remind everyone of
our Software Licensing Agreement. We pre-register all compilers in a user’s name. You can install
your compiler on your home PC and laptops. If you do not have access to the registration files and
installer, contact customer service for assistance.

CCS wants to help further embedded development by customers, and is offering a discount on any
new compilers or maintenance plan purchases. The customers that need development boards, and
programmers, we are offering Free Ground shipping (to the U.S.48) so you can get the tools you
need to continue working from home.

Most importantly, as we work together in this unique and rapidly changing environment, we do so with
confidence that we will overcome this challenge. Until then, we hold our enduring commitment to the
health and well-being of our employees and customers.

Please let us know how we can help you. Stay healthy.

Follow Us!

More than 25 years experience in
software, firmware and hardware
design and over 500 custom embedded
C design projects using a Microchip
PIC® MCU device. We are a recognized
Microchip Third-Party Partner.

 www.ccsinfo.com

COVID-19 RESPONSE

