
C Workshop Compiler
&

E3 Sensors Explorer Kit

TECH NOTE: Unrolling Loops with a Duff’s Device
TECH NOTE: Compiler Feature Focus
TECH NOTE: Built-in Local Interconnect Network (LIN) Bus Support

July 2020

Email:
support@ccsinfo.com
sales@ccsinfo.com
Ph: 262-522-6500

New Compiler Versions
>Downloads>Compiler Software

Easy License Renewal
>Support>Renewalswww.ccsinfo.com

2

Do you remember when you learned programming languages and your teacher or instruction materials
told you to never use a GOTO because it could lead to code that was difficult to understand? Here is
something that you might not have been warned about - Duff’s device. Duff’s device was created by
Tom Duff, and its design was to unroll and speed up loops by removing conditional statements from the
loop. By doing this, the execution time of the loop is decreased. A Duff’s device is basically a switch-
case statement, with the break operations removed so the code can continue by falling to the next case.
Let us look at how it works and look at some real measurements of speed increases on a PIC18F MCU.

Before jumping into a Duff’s device, it would be useful to review the switch-case statement in C:

switch() reviews the value passed to it, the variable ‘state’ in the above example, and jumps to
matching case statement that matches this variable. For most cases, the C compiler will create a jump
table at the switch() to jump to the variable that matches. That means for a switch() statement,
most of all the branching logic happens at the switch() statement. The break statement tells the C
compiler to jump out of the current switch().

Notice anything odd about the case 2 in the above example? It does not have a break at the end!
Without this break, you are telling the compiler that you want to continue execution. That means in
the above example, when the case 2 has finished it will keep rolling into the case 3. Many compilers
(including CCS C) and lint tools will generate a warning that you forgot a break statement, because for
many control loops the developer only intended one block of code to execute for each case. But in a
Duff’s device we are going to leverage the ability to continue execution to the next case.

Let us look at a simple loop, maybe being used to send pulses or clock data on the IO:

Unrolling Loops with a Duff’s Device

switch(state)
{
 case 0:
 doState0();
 break;
 case 1:
 doState1();
 break;
 case 2:
 doState2();
 case 3:
 doState3();
 break;
}

#define PULSE() output_toggle(PIN_PULSE); \
 output_toggle(PIN_PULSE)

void send(int n)
{
 while(n--)
 {
 PULSE();
 }
}

3

This is a simple function that generates n pulses, using a while loop to decrement n and exit when n is
0. That means for every pulse, the value of n has to be decremented and checked against 0. Look at
the timing of pulses generated on a PIC18F MCU running at 4MHz (one instruction every 1us):

This generated a 100KHz signal. You will notice the discrepancy of the duty cycle; the high time is 1us
but the low time is 9us. That’s because it took 8us to execute the while(n--) portion of the loop.

Now let us replace it with a Duff’s device:

In the above example, the switch(n) creates a jump table of up to 8 pulses and jumps to position with
n pulses. After the jump is calculated and executed, the following pulses run without any other condi-
tional code. Lets look at the timing of pulses generated on a PIC18F running at 4MHz (one instruction
every 1us):

#define PULSE() output_toggle(PIN_PULSE); \
 output_toggle(PIN_PULSE)

void send(int n)
{
 switch(n)
 {
 case 8:
 PULSE();
 case 7:
 PULSE();
 case 6:
 PULSE();
 case 5:
 PULSE();
 case 4:
 PULSE();
 case 3:
 PULSE();
 case 2:
 PULSE();
 case 1:
 PULSE();
 }
}

4

This creates a 500KHz signal, 5 times faster than using a while loop. Also of interest is the duty cycle

of the signal, which is now 50% (even time high and low) because the pulses execute without any other
conditional checks. If you look at the LST file to view the instructions generated, the reason for this is
clear (BTG instruction is used to perform a bit toggle, in this case toggling the register that controls this
GPIO pin):

The next time you have a loop and you were looking to optimize it for speed, the Duff’s device is a great

method for accomplishing this!

.................... case 8:

.................... PULSE();
00016: BTG 3FBD.0
00018: BTG 3FBD.0
.................... case 7:
.................... PULSE();
0001A: BTG 3FBD.0
0001C: BTG 3FBD.0
.................... case 6:
.................... PULSE();
0001E: BTG 3FBD.0
00020: BTG 3FBD.0

5

Add this line of code to your program to utilize the aggressive code optimizer in the CCS
C Compiler! This optimizer works for space instead of speed. This tool searches the entire
compiled program to find repeating blocks of code and reduce them into one shared
sub-routine.

The average size reduction of program memory is approximately 15%. In some cases, we have
seen program memory reduced by 60%. The chart above features examples of compression
levels:

#opt compress

Our Automatic Source code formatting is a great tool in the CCS C Compiler. The tool
is intelligent enough to look over your code and indent it in an
easy-to-read format!

Forgot to indent your code?
Use the Format Source Button!

Format Source Button

6

Built-in Local Interconnect Network (LIN) Bus Support

The CCS C Compiler has added built-in Local Interconnect Network (LIN) bus support to the #use
rs232() library. LIN bus is an inexpensive serial communication protocol used primarily in the automo-
tive industry to complement the existing CAN Bus network. The LIN bus network contains one master
node and up to 15 slave nodes for a total of 16 nodes, and supports bit rates up to 20 kbit/s.

The LIN bus protocol’s message frame consist of two parts, the header and the response. The header
is always sent by the master node, meaning all communication is initiated by the master node. After
the header is sent only one node sends the response. The header consists of three main fields, the
break field, the sync field and the identifier field. The break field is used to get the attention of all LIN
slave nodes on the network. The sync field is the hexadecimal value 0x55 used by the slave nodes to
determine the current bit time of the bus. Finally the identifier field is used to determine which node will
respond during the response part of the frame. The response consist of two fields, the data field and
the checksum field. The data field contains 0 to 8 bytes and the checksum field is one byte. Depending
on the LIN bus protocol specification being used the checksum is either the checksum of the data field
bytes, or the identifier field and the data field bytes.

The following options have been added to the CCS C Compiler’s #use rs232() library to enable LIN
bus master or slave protocol support, LIN=MASTER and LIN=SLAVE. Additionally the options LIN_
CHECKSUM=LEGACY or LIN_CHECKSUM=ENHANCED can be used to select which checksum type
is used by default by the functions. Legacy checksum only uses the data field when calculating the
checksum, and enhanced uses both the identifier field and the data field when calculating the check-
sum.

Whether a device can use the library’s built-in LIN bus protocol support depends on the mode being
used and configuration. When setup as a LIN bus master both software and hardware configurations
are support, the only limitation is that when using the hardware UART peripheral the device is required
to have an advanced UART peripheral or an UART peripheral with built-in protocol support. When
setup as a LIN bus slave it’s only supported when using the hardware UART peripheral on devices that
have an advanced UART peripheral or an UART peripheral with built-in protocol support. For devices
that have a hardware UART peripheral, most devices have a UART peripheral that will work with the
#use rs232() library’s built-in LIN bus protocol.

When built for a LIN bus master the following functions are added by the #use rs232() library: linbus_
header(), linbus_rx_response(), linbus_tx_response() and linbus_checksum_type(). The linbus_head-
er() function is used to by the master to send the header part of the LIN bus message frame, the parity
bits of the identifier field is automatically calculated by the function. The linbus_rx_response() function
is used by the master to receive the response from one of the slave nodes during the response part
of the LIN bus message frame. The linbus_tx_response() function is used by the master to transmit
the response during the response part of the LIN bus message frame, the master node only sends the
response when the identifier it sent indicates that it should transmit the response. Finally the linbus_
checksum_type() function can be used to change how the linbus_tx_response() function calculates the
checksum that it sends when used to send the response part of the LIN bus message frame.

When built for a LIN bus slave the following functions are added by the #use rs232() library: linbus_
header_hit(), linbus_header_get(), linbus_rx_response(), linbus_tx_response() and linbus_checksum_
type(). The linbus_header_hit() function is used to determine if the header as been received. For de-
vices that have a UART with build-in protocol support this function returns TRUE after the entire header
as been received, and for devices with an advanced UART it returns TRUE after the first 8 bits of the

7

break byte is received. The linbus_rx_header() function is used to retrieve the identifier field of the re-
ceived header, the parity bits masked off. Additionally for devices with an advanced UART peripheral
this functions also sets up the UART peripheral to receive the sync field. The linbus_rx_response()
function is used by the slave to receive the response from another node during the response part of the
LIN bus message frame. For devices with a UART peripheral with built-in protocol support this function
only needs to be called if the received identifier indicates that the message is to be received by that
node. For devices with an advanced UART this function should be called for all messages were the re-
ceived identifier doesn’t indicates that the node should transmit the response. The linbus_tx_reponse()
function is used by the slave to transmit the response during the response part of the LIN bus message
frame. This function should only be called when the received identifier indicates that the node should
transmit the response. Finally the linbus_checksum_type() function can be used to change how the
linbus_tx_response() function calculates the checksum that it sends when used to send the response
part of the LIN bus message frame.

Product Spotlight
C Workshop Compiler and E3 Sensors Kit

C Workshop Compiler
Limited to 13 Devices with the IDE

Sensors Explorer Kit
Sku: S-205

Supported Devices:
8-bit: PIC10F222, PIC12F1822, PIC16F84A, PIC16F818,
PIC16F877A, PIC18F13K50,PIC16F1459, PIC18F24J11,
PIC18F4520

16-bit: PIC24F16KM102, PIC24FJ128GA006,
dsPIC30F3010, dsPIC33EP128MC202

*Additional chips may be purchased separately

$69

$99
Sku: 52204-1534

8

During this time of global uncertainty and change, we want to assure you that we are taking every
precaution to ensure that we can safely support our customers during this time.

Despite these challenges, CCS staff is continuing to provide technical support, as well as processing
orders. It is essential customers have the tools they need to provide the development of existing or
new products that may be necessary in the fight of Covid-19.

Many of our existing customers are having to work from home and we want to remind everyone of
our Software Licensing Agreement. We pre-register all compilers in a user’s name. You can install
your compiler on your home PC and laptops. If you do not have access to the registration files and
installer, contact customer service for assistance.

CCS wants to help further embedded development by customers, and is offering a discount on any
new compilers or maintenance plan purchases. The customers that need development boards, and
programmers, we are offering Free Ground shipping (to the U.S.48) so you can get the tools you
need to continue working from home.

Most importantly, as we work together in this unique and rapidly changing environment, we do so with
confidence that we will overcome this challenge. Until then, we hold our enduring commitment to the
health and well-being of our employees and customers.

Please let us know how we can help you. Stay healthy.

Follow Us!

More than 25 years experience in
software, firmware and hardware
design and over 500 custom embedded
C design projects using a Microchip
PIC® MCU device. We are a recognized
Microchip Third-Party Partner.

 www.ccsinfo.com

COVID-19 RESPONSE

