
<Bits & Bytes>
NewsletterJa

n/
Fe

b
20

22

INSIDE
THIS ISSUE:

 PRODUCT SPOTLIGHT

www.ccsinfo.com

support@ccsinfo.com

262-522-6500

sales@ccsinfo.com

Pg 1
Product Spotlight: Capacitive
Touch Development Kit

Pg 2
Capacitive Touch Technology

Pg 2
Feature Focus: #ZERO_RAM
& #FILL_ROM

Pg 3
Technique: Extended RAM

Pg 4-5
How Long Does It Take for
Code to Execute

Pg 6
Promotions

INSIDE
THIS ISSUE:

Capacitive Touch Development Kit

Create human touch applications with the Capacitive Touch Development Kit. Along with a
prototyping board, it includes the powerful PCW Integrated Development Environment with
compiler support for Microchip’s PIC10, PIC12 and PIC16 families and an ICD-U64 in-circuit
programmer/debugger that supports C-aware real time debugging. The capacitive touch
prototyping board features Microchip’s PIC16LF727- part of the new generation of Enhanced
Mid-Range family of PIC16 devices with mTouch™ Sensing Solution technology. An exercise
tutorial contain 14 example programs that steps the user through capacitive touch applications.

PIC® is a registered trademark of Microchip Technology Inc.

2

Capacitive Touch Technology

The generation of Enhanced Mid-Range Family of PIC16 devices include mTouch™Sensing
technology. CCS demonstrates our uses for Capacitive Touch Development Board and compiler
libraries in a fun hands-on application.

The CCS Capacitive Touch board uses the PIC16LF727 device for creating human touch
applications and utilizing contact sensitive hardware. Instead of using mechanical switches or
buttons that can break, the Capacitive Touch pads are activated by placing a human finger over the
pad and the user’s natural electrical properties generate the needed response or change.

Cut development time by utilizing specific Capacitive Touch functions built into the CCS C
Compiler. The #USE TOUCH_PAD library reduces roughly 500 lines of assembly to 1 line of C
code! A full version of the CCS C Compiler is available with the development kit.

The CCS Exercise tutorial contains 14 example programs that step the user through Capacitive
Touch applications. Use the 16 on-board programmable capacitive pads and LCD to quickly
develop “touch” applications. In addition, the board is equipped with *Tag Connect footprint for
ICSP™ programming and a ICD-U64 that can be used with all Flash-supported PIC®MCU devices.

For additional information or to order today, go to: www.ccsinfo.com/Touch

#ZERO_RAM & #FILL_ROM
These are used to fi ll RAM and ROM with a known value so your programs always run in the
same starting environment, even with uninitialized variables!

#zero_ram fi lls all RAM locations with 0 before the fi rst line of code is executed. This allows programs
to always start in the same state, solving inconsistent behavior due to uninitialized variables. There is
a #zero_local_ram that can be placed before a function to cause its variables to be zero’ed every time
it is called.

The #fi ll_rom directive can be used to cause predictable behavior in case the program counter
changes to unused program memory. Some users prefer a GOTO itself instruction to halt the code,
others use a NOP to prevent anythingbad from happening until the PC wraps around and restarts. A
RESET may be used on chips that have it or a GOTO 0 to cause a fast restart.

FEATURE FOCUS

3

The 24 bit PIC architecture allows for very easy access from most instructions to locations 0x0000
to 0x1FFF. There are some additional instructions to move data from a working register to a
location in the 0x2000 to 0x7FFF range. Note that 0x0000 to 0x07FF (or 0x0FFF on some parts)
are special function registers, not general RAM.

Some devices have more than 30K of RAM. For these devices a special method
is required to access the RAM above 30K. This extended RAM is organized into pages
of 32K bytes each. The only way to access that RAM from assembly is to set a page register to
identify the RAM page and then use indirect addresses from 0x8000 to 0xFFFF. Note that the
first page is used to map program memory into the RAM address space. The other pages are the
extended RAM.

From C, the compiler will allocate variables into the first page of extended RAM only. To access
additional memory special functions must be used.

The basic functions to access that RAM are:
	 write_extended_ram(p, addr, ptr, n);
 Writes n bytes from ptr to extended RAM page p starting at address addr.

	 read_extended_ram(p,addr,ptr,n);
 Reads n bytes from extended RAM page p starting at address addr to ptr.

	 The first page is 1.

Example Code:

write_extended_ram(1,0x100,WriteData,8); //Writes 8 bytes from WriteData to
 //addresses 0x100 to 0x107 of
 //extended RAM page 1.

read_extended_ram(1,0x100,ReadData,8); //Reads 8 bytes from addresses 0x100
 //to 0x107 of extended RAM page 1
 //to ReadData.

Extended RAM on 24 bit parts

4

How Long Does It Take for Code to Execute

The PIC instructions are very deterministic in the time they take. There are exceptions, but in
general a instruction takes 4 clocks (or 2 on some 24 bit chips) and if there is a change in the
program counter it take s twice as long. Counting instructions in the LST file is one way to figure
out the time code takes. Consider this example from the LST file:

The IF statement takes instruction times if a==b or 4 otherwise. On a PIC18 this is 16 clocks. So
if the chip oscillator (fosc) is 40mhz. Then the instruction time is 4/40000000 or 100ns. This IF
statement takes 300ns or 400ns to execute. The two assignments take 400ns so in total if a==b
then it takes 700ns or 400ns otherwise.

IDE users can use the code profiling tool to find out how long functions take to execute or to time
how long it takes to get from one point in code to another.

Use code like the following To do timing manually:

.................... if(a==b) {
0C82: MOVF 07,W
0C84: SUBWF 06,W
0C86: BNZ 0C90
.................... a=1;
0C88: MOVLW 01
0C8A: MOVWF 06
.................... b=9;
0C8C: MOVLW 09
0C8E: MOVWF 07
.................... }

 setup_timer_1(t1_internal|t1_div_by_4); // 1us tick
 set_timer1(0);
 for(i=1;i<=100;i++) {
 a=b;
 }
 overhead=get_timer1();

 set_timer1(0);
 clear_interrupt(int_timer1);

 for(i=1;i<=100;i++) {
 a=b+c;
 }
 time=get_timer1();
 time=time-overhead;

 if(interrupt_active(int_timer1))
 printf("\r\nOVERFLOW");
 printf("\r\nus=%6.2lw\r\n",time);

5

How Long Does It Take for Code to Execute

Unsigned 8 bit operations for math operations are quite fast and floating point is very slow. If
possible consider fixed point instead of floating point.

For example, instead of “float cost_in_dollars;” do “long cost_in_cents;”. You can also get the
compiler to do the math for you by using a declaration like “long fixed(2) cost_in_dollars;”

Consider a lookup table for trig formulas instead of real time calculations (see EX_SINE.C for an
example).

Note all times will vary depending on memory banks used and sometimes for multiply, divide and
float operations the actual numbers will affect the time.

int8 int16 int32 float32
+ 0.2 us 1.0 us 2.6 us 47.0 us

- 0.2 us 1.0 us 2.6 us 49.6 us

* 9.6 us 42.2 us 109 us 121 us

/ 20.0 us 68.6 us 228 us 220 us

sin() 2.18 ms

crc32 84 ms

int8 int16 int32 int48 int64
+ 43 ns 14 ns 29 ns 43 ns 57 ns

- 71 ns 14 ns 29ns 43 ns 57 ns

* 85 ns 14 ns 727 ns 1.1 us 1.1 us

/ 370 ns 271 ns 9.5 us 10 us 40 us

crc32 2.3 us

float32 float48 float64
+ 3.4 us 3.5us 3.6us

- 3.4 us 3.5us 3.6 us

* 1.6 us 1.1 us 2.1 us

/ 9.1 us 10.3 us 20.4 us

sin() 18 ms 46 ms 103 ms

PIC18 40 MHz 10 MIPS

PIC24 140 MHz 70 MIPS

6

Follow Us!

More than 25 years experience in
software, firmware and hardware
design and over 500 custom embedded
C design projects using a Microchip
PIC® MCU device. We are a recognized
Microchip Third-Party Partner.

 www.ccsinfo.com

C Compiler Savings

$25 Off a
Full Compiler
or Compiler

Maintenance
Use Code: Winter2022

8-Bit AVR®® Support for Programmers

sales@ccsinfo.com
262-522-6500 EXT 35

www.ccsinfo.com/NL0222

Programming support for all
8-bit AVR® microcontrollers.

LOAD-n-GO, Prime8 and ICD-U80
supported. Programming

adapter and cables available as
separate purchase.

8-bit AVR®
Programming Adapter

53505-1867 | $25.00

AVR® is a registered trademark of Microchip Technology Inc.

