
Ready...
For embedded software tools •	
designed EXCLUSIVELY for
PIC® MCUs
For a complete, low-cost, •	
powerful C solution
For ready-to-run example •	
programs and tested peripheral
drivers to start any project

Set...
Using a C Compiler with IDE and •	
C Aware Real-time Debugger
Using In-Circuit Debugger and •	
Programmers
Using Prototyping Boards or •	
complete Development Kits

GO!...

PIC® MCU and dsPIC®DSC are registered trademarks of Microchip Technology, Inc.

www.ccsinfo.com
sales@ccsinfo.com

Phone: 262.522.6500
Sales x35

Tech Support x32

CCS C Compiler

Processor &
Peripheral Controls

The CCS C Compiler for PIC10, PIC12,
PIC14, PIC16, PIC18 and PIC24
microcontrollers has over 180 Built-in-
Functions to access PIC® MCU hardware
is easy and produces efficient and highly
optimized code.

Functions such as timers, A/D, EEPROM,
SSP, PSP, USB, I2C and more:

•	 Built-in	libraries	that	work	with	all	chips	for	RS-232	serial	I/O,	I2C,
discrete	I/O	and	precision	delays

•	 Serial	I/O	functions	allow	standard	functions	such	as	GETC()	and	
PRINTF()	to	be	used	for	RS-232	like	I/O

•	 Formatted	printf	allows	for	easy	formatting	and	display	in	HEX	or	
decimal

•	 Multiple	I2C	and	RS232	ports	may	be	easily	defined
•	 #use	rs232()	offers	options	to	specify	a	maximum	wait	time	for	getc
•	 Hardware	transceiver	used	when	possible,	but	for	all	other	occasions	

the	compiler	generates	a	software	serial	transceiver
•	 Microcontroller	clock	speed	may	be	specified	in	a	PRAGMA	to	

permit	built-in	functions	to	delay	for	a	given	number	of	microseconds	
or milliseconds

•	 Functions	such	as	INPUT()	and	OUTPUT_HIGH()	properly	maintain	
the	tri-state	registers

•	 Compiler	directives	determine	if	tri-state	registers	are	refreshed	on	
every	I/O	or	if	the	I/O	is	as	fast	as	possible

•	 #USE	SPI	()
•	 Simple	functions	like	READ_ADC()	to	read	a	value	from	A/D	

converter
•	 Source	code	drivers	included	for	LCD	modules,	keypads,	24xx	and	

94xx	serial	EEPROM,	X10,	DS1302	and	NJU6355	real	time	clocks,	
Dallas	touch	memory	devices,	DS2223	and	PCF8570,	LTC1298	
and	PCF8591	A/D	converters,	temperature	sensors,	digital	pots,	I/O	
expander	and	much	more

 Advanced
Functions

The compiler can handle inline or
separate functions, as well as parameter
passing in re-usable registers.

Transparent to the user, the compiler
handles calls across pages automatically
and analyzes program structure and
call tree processes to optimize RAM and
ROM Usage.

Additional features include:

•	 Efficient	function	implementation	allow	call	trees	deeper	than	the	
hardware	stack

•	 Automatic	linking	handles	multiple	code	pages
•	 Assembly	code	may	be	inserted	anywhere	in	the	source	and	may	

reference	C	variables
•	 Function	Overloading	allows	for	several	functions	with	the	same	

name,	but	differences	in	number	and	type	of	parameters
•	 Default	Parameters	can	be	used	in	a	function	if	arguments	are	not	

used	in	a	call
•	 Interrupt	functions	supported	on	PCM/PCH.	The	compiler	generates	

all	startup	and	clean	up	code	as	well	as	identifying	the	correct	
function	to	be	called

•	 Reference	parameters	may	be	used	to	improve	code	readability	and	
inline	function	efficiency

•	 Generation	Of	Multiple	HEX	Files	For	Chips	With	External	Memory
•	 Variable	Number	Of	Parameters	in	a	function
•	 Relocatable	Objects	/	Multiple	Compilation	Unit	(IDE	Only)
•	 Automatic	#fuses	Configuration

Features
The compiler is comprised with Standard C operators and built-in libraries that are
specific to PIC ® MCU registers, and access to hardware features from C.

PIC10 / PIC12 / PIC14 / PIC16 / PIC18
1, 8, 16, 32-bit integer types & 32-bit floating point

Bit Arrays and Fixed Point Decimals

#BIT and #BYTE will allow C variables to be
placed at absolute addresses to map registers
to C variables
Standard one-bit type (Short Int) permits the
compiler to generate very efficient Bit-oriented code

Constants (including strings and arrays) are
saved in program memory

Flexible Handling of Constant Data

Variable length Constant Strings

AddressMod capability to create user defined
address spaces in memory device

Advanced Features in PIC24 & dsPIC® DSCs
Also 48 & 64-bit floating point make calculations
requiring greater precision or broader range easier

#BIT, #BYTE and #WORD will allow C variables
to be placed at absolute addresses to map registers

Constants in ROM

Enhanced oscillator control to choose from
a multitude of clock sources, PLL and power
saving options

Function recursion allows for interactive
processing algorithms

Serial EEPROM/Flash A/D & D/A Converters Real-Time Clock LCD Expanded Input/Output Other

2041 AD7705AD7715 DS1302 GLCD 74165 Digital Compass

24xx ADS8320 NJU6355 KS0108 74595 Keypad

25xx LTC1298 DS1305 LCD MAX7300 Mag	Card	REader

93xx MAX517 ISL1209 LCD420 SC28L19x PLL	Inteface

AT2421 MCP4921 SED1335 Dallas	One	Wire

AT25256 MCP3204 Sounds HDM64GS12 Serial RAM IR	Decoder

AT29C1024 MCP3208 WTS701 68HC68R1 Line	Tracker

AT45DB021 TLC545N TONES Temperature 68HC68R2 Servo	Control

CE51x ISD4003 DS1621 M68AF031 X10

CE62x Digital Pots DS162M PCF8570 Cyclic	Redundancy	Code

CE67x AD8400 RFID DS1631 D41256 RS485

9512 DS1868 EM4095 DS1624 MT4264 N9085UD

MMC/SD MCP41010 EM4402 LM75CIM3 PNI11096

DS2??		(1-wire	EEPROM) EM4150 Networking/Internet LMX2326

USB CAN Functionality TCP

Robotics USBN960x Accelerometer MCP251x PPP

GP2D12 PIC_USB ADXL210 8xxx8 S7600

Line	Tracking	Sensors PIC18_USB 18F4580 RTL8019

ENC28J60

LCD Frequency	counter Fixed	Point DTMF	Tones Boot	Loader
A/D 7	Seg	LED TCP/IP CRC	Calculator CAN	Bus
PWM Data	Logger Floating	Point CCP I/O	for	8-in	Parts
Comparator Pattern	Generator ICD	Debugging Watchdog	Timer Sleep
PSP Stepper Motors Advanced	Macros Analog	Comparator Timers
Serial	Interrupts Tone	Generation Memory Management Optical	Encoder
Magnetic	Card	Reader Temperature	Sensor I2C USB

#include <18F4520.h>
#fuses HS,NOWDT,NOPROTECT,NOLVP
#use_delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

#define INTS_PER_SECOND 76 // (20000000/(4*256*256))

BYTE seconds; // A running seconds counter
BYTE int_count: // Number of interrupts left before a
 // second has elapsed

#int_rtcc // This function is called every time
void clock_isr() { // the RTCC (timer0) overflows (255->0).
 // For this program this is
 if(--int_count=0) { // apx 76 times per second.
 ++seconds;
 int_count=INTS_PER_SECOND;
 }
}

void main() {
 BYTE start:

 int_count=INTS_PER_SECOND;
 set_timer0(0);
 setup_coutner(RTCC_INTERNAL, RTCC_DIV_256 | RTCC_*BIT);
 enable_interrupts(INT_RTCC);
 enable_interrupts(GLOBAL);

 {
 printf(“Press any key to begin.\n\r”);
 getc();
 start=seconds;
 printf(“Press any key to stop.\n\r”);
 getc();
 printf(“%u seconds.\n\r”,seconds-start);
 }while (TRUE);
}

#include<16F877a.h>
#fuses HS,NOLVP,NOWDT,PUT
#use delay(clock=20000000)
#use rs232(baud=9600,xmit=PIN_C6,rcv=PIN_C7)

void main() {
 int i, value, min, max;

 printf(“Sampling:”);
 setup_adc_ports(RA0_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 do { //Takes 30 samples from
 min=255; //pin A0 and displays the min and
 max=0; //max values for that 100ms peroid
 for(i=0; I <= 30; ++i) {
 delay_ms(100);
 value=read_adc();
 if(value < min)
 min = value:
 if(value > max)
 max = value;
 }
 printf(“\n\rMin:%x MAX: %x”, min, max);
 } while (TRUE);
}

Complete Example Programs

Included C Driver:

Seconds Counter Simple A/D

RS-232 I2C DISCRETE I/O LCD STANDARD C CHAR
getc() i2c_start() output_low() lcd_load() atoi()

putc() i2c_stop() output_high() lcd_symbol() atol()

gets() i2c_read() output_float() setup_lcd() atoi32()

puts() i2c_write() output_bit() atof()

printf() i2c_poll() input() TIMERS tolower()

kbhit() i2c_isr_state() output_x() setup_timer	x() toupper()

assert() i2c_slaveaddr() input_x() set_timer_x() isalnum()

fgetc() port_b_pullups() get_timer_x() isalpha()

fgets() PARALLEL SLAVE I/O set_trix_x() setup_counters() ismoung()

fprintf() setup_psp() get_tris_s() setup_wdt() isdigit()

fputc() psp_input_full() output_drive() restart_wdt() islower()

fputs() psp_output_full() input_state() set_timer_xy()* isspace()

getch() psp_overflow() port_a_pullups() get_timer_xy()* isupper()

getchar() isxdigit()

perror() DELAYS BIT MANIPULATION iscntrl()

putchar() abs() delay_cycles() shift_right() isgraph()

setup_uart() acos() delay_us() shift_left() isprint()

set_uart_speed()* asin() delay_ms() rotate_right() ispunct()

atan() rotate_left() itoa()

SPI TWO-WIRE I/O atan2() CAPTURE/COMPARE PWM bit_clear() strlen()

setup_spi() ceil() setup_ccp_x() bit_set() strncpy()

setup_spi2() cos() set_pwmX_duty() bit_test() strcmp()

spi_read() exp() set_power_pwm_override() swap() stricmp()

spi_read2() floor() set_power_pwmx_duty() make8() strncmp()

spi_write() labs() setup_power_pwm() make16() strncmp()

spi_write2() log() setup_power_pwm_pins() make32() strcat()

spi_data_is_in() log10() setup_capture()* _mul() strstr()

spi_data_in2() sin() get_capture()* strchr()

spi_xfer() sqrt() set_compare_time()* RTOS strrchr()

tan() rtos_await() strtok()

VOLTAGE REF cosh() PROCESSOR CONTROLS rtos_enable() strspn()

setup_vref() div() sleep() rtos_msg_poll() strpbrk()

setup_low_volt_detect() fabs() reset_cpu() rtos_msg_read() strlwr()

setup_comparator()* fmod() restart_cause() rtos_msg_send() sprintf()

frexp() disable_interrupts() rtos_overrun() strcoll()

A/D CONVERSION ldexp() enable_interrupts() rtos_run() strncat()

setup_adc_port() ldiv() ext_int_edge() rtos_signal() strtod()

setup_adc() modf() read_bank() rtos_stats() strtol()

set_adc_channel() pow() interrupt_active() rtos_terminate() strtoul()

read_adc_channel() sinh() getenv() rtos_wait() strxfrm()

adc_done() tanh() setup_oscillator() rtos_yield()

setup_adc_port()* clear_interrupt() (RTOS	only	in	PCW PARALLEL MASTER PORT
setup_adc()* STANDARD C MEMORY goto_address() and	PCWH	packages) pmp_overflow_input()

set_adc_channel()* memset() jump_to_isr() pmp_overflow_output()

read_adc()* memcpy() lavel_address() INTERNAL EEPROM pmp_address()

adc_done()* calloc() read_eeprom() pmp_input_full()

free() REAL TIME CLOCK write_eeprom() pmp_output_full()

CYCLILC REDUNDANCY CHECK longjmp() rtc_alarm_read()* read_program_eeprom() pmp_overflow()

crc_calc()* malloc() rtc_alarm_write()* write_program_eeprom() pmp_read()

crc_init()* memcmp() rtc_read()* read_calibration() pmp_write()

crc_psuedo_code()* memmove() rtc_write()* erase_program_eeprom() psp_input_full()

help_crc()* offsetof() setup_rtc()* read_external_memory() psp_overflow()

setup_crc()* offsetofbit() setup_rtc	_alarm()* read_program_memory() psp_read()

realloc() setup_external_memory() psp_write()

STANDARD C SPECIAL setjmp() QUADRATURE ENCODER INTERFACE write_configuration_memory() setup_pmp()

bsearch() qui_get_count()* write_external_memory() setup_psp()

rand() MOTOR PWM qui_set_count()* write_program_memory()

srand() get_motor_pwm_event()* qui_status()* erase_program_memory()*

qsort() set_motor_pwm_event()* setup_qui()* read_rom_memory()*

setup_motor_pwm()* read_configuration_memory()*

DIRECT MEMORY ACCESS setup_motor_pwm_duty()* ANALOG COMPARE

dma_start()* setup_motor_unit()* setup_comparator()

dma_status()*

setup_dma()*

*PCD	and	PCWHD	Built-in-Functions

Built-in Functions

Specific Features

STANDARD C FUNCTION QUALIFIERS RTOS PRE-DEFINED IDENTIFIERS MEMORY CONTROL COMPILER CONTROL

#define #inline #use	rtos _date_ #asm #case

#else #int_default #task _device_ #bit #opt

#elif #int_global (RTOS	only	in	PCW _file_ #byte #priority

#endif #int_xxx and	PCWH	packages) _line_ #endasm #ignore_warnings

#error #separate _pcb_ #fill_rom #export

#if BUILT-IN LIBRARIES _pcm_ #locate #import

#ifdef DEVICE SPECIFICATION #use	delay _pch_ #reserve #module

#include #device	chip #use	fast_io _time_ #rom

#pragma #fuses #use	fixed_io _filename_ #zero_ram

#undef #id #use	i2c #org

#ifndef #id	checksum #use	rs232 LINKER #type

#list #id	number #use	standard_io #import #word

#nolist #serialize #use	spi #export

#hexcomment #build

...................done=FALSE;
09C: BCF 3B, 1
...................while (!done&input(PIN_B2)) {
09D: BTFSC 3B, 1
09E: GOTO 0BC
09F: BTFSS 06, 2
0A0: GOTO 0BC
................... level=limit*16;
0A1: MOVF 3D, W
0A2: MOVWF 3C
0A3: SWAPF 3C, F
0A4: MOVLW F0
0A5: ANDWF 3C, F
................... if(get_rtcc()>71)
0A6: MOVF 01, W
0A7: MOVWF 20
0A8: MOVLW 48
0A9: SUBWF 20, W
0AA: BTFSS 03, 0
0AB: GOTO OAE
................... output_high(PIN_B1);
0AC: BSF 06, 1
................... else
0AD: GOTO 0AF
................... output_low(PIN_B1);
0AE: BCF 06, 1
................... if(++limit==0x24)
0AF: INCF 3D, F
0B0: MOVLW 24
0B1: SUBWF 3D, W
0B2: BTFSC 03,2
................... limit=0;
0B3: CLRF 3D
................... output_bit(PIN_B3,
................... shift_left(&data,1,0));
0B4: BCF 03, 0
0B5: RLF 2D, F
0B6: BTFSC 03, 0
0B7: GOTO 0BA
0B8: BCF 06, 3
0B9: GOTO 0BB
0BA: BSF 06, 3

if, else, while, do, switch, case, •	
for, return, goto, break, continue
! ˜ ++ -- * = = , & |•	
*/% << >> ^ && || ? :•	
<= < > >= == !=•	
= += -= *= /= %= >>= <<= &= ^=m |=•	
typedef, static, suto, const, enum, struct, union•	
Arrays up to 5 subscripts•	
Structures and Unions may be nested•	
Custom bit fields (1-8 bits) within structures•	
ENUMerated types•	
CONstant variables, arrays, structures, and strings•	
Full function parameter support (any number and kind)•	
C++ reference parameters and comments allowed•	

Supports user defined data storage locations•	
C data types may reside in any type of storage•	
User-defined access routines•	
Implements a virtual memory scheme•	
Located C data in program memory•	
Targets with external memory can use the •	
external bus for data

Preprocessors

Example C/ASM Listing Standard C Syntax

Standard C Syntax

CCS C Windows IDE & C Aware
Real-time Debugger

File	bar	shows	all	project	related	files	and	can	quickly
open or compile a file.
Identifier	bar	shows	all	project	functions	and	identifiers.

Simplifies	configuration	of	drivers	and	peripherals	to	start	
projects	quickly.		Forms	based	on	interactive	questions	to	
aid	in	set-up	of	options,	such	as	calculating	and	showing	the	
timer	options	based	on	your	clocks.
Included	in	PCW:	CAN	Bus,	USB,	RS-485,	and	many	more

Device	Selector
Edit/Add	to	Device	Database
Generate	C	Constant	
Declarations	from	hex/binary

Special	Function	Register	Reference
Serial Port Monitor
File	compare	for	list	or
source	files

Project Navigation Wizards

Tools Editor Features
RTOS--integrated for maximum
efficiency and multi-tasking allowed
with deterministic scheduling
Automated C indenting
Context Sensitive Help
Color Syntax Highlighting

CCS C Windows IDE & C Aware
Real-time Debugger

IDE	compiler	capabilities	include	many	utilities	to	aid	in	program	design	
and	editing.		The	C	Aware	Real-time	Debugger	allows	for	high-level	
debugging	in	a	C.		It	is	included	in	all	IDE	compilers	and	can	be	used	
with	the	CCS	ICD	and	Mach	X,	and	Microchip	ICD2	and	RealICE.

Watches

Full	C	expressions	
can	be	specified.		
Arrays	and	structures	
are	understood	and	
shown	in	natural	form.	
Variables	can	be	
modified	and	break	
points	can	be	set	in	
file line.

Data EE

A	monitor	allows	
character	I/O	to	
and from the target
platform. The target
platform can printf to
this	debugger	window	
and getc from it.

Peripherals

Special	function	
registers	are	grouped	
by	a	function	and	
each	bit	is	fully	
interpreted in the
debugger	window.

Logging

Configurable	to	save	
data each time a
specified	source	line	
is	executed.		Set-up	
profiles	can	be	saved	
and	used	with	any	
project.
Debugger	data	can	
be	printed	or	saved	to	
disk file.

C Aware Real-time
Debugger

Special Viewers

RAM

The	RAM	window	
allows	the	user	to	
view	all	the	memory	
locations in the
device	RAM.

Include quick and easy access to data sheets,
valid fuses, interrupts for devices, hex file
disassembler, .COD file interpreter, and an
advanced source/list file compare.

RTOS--integrated for maximum
efficiency and multi-tasking allowed
with deterministic scheduling
Automated C indenting
Context Sensitive Help
Color Syntax Highlighting

C	brace	matching
Multiple	open	windows
Technical	Support	Wizard
Multiple	Compilation	Unit
preprocessor	directives

Documentation	Generator
Flow	Chart	Editor
RTF	Documentation	Generator
Spellchecker
Download	Manager

LOAD-n-GO
Handheld
Programmer
Low-cost in-circuit
programmer for Microchip
Flash devices:
•	AA	battery	operated	or	9V	DC	Adapter
•	2MB	flash	that	can	store	up	to	4	programs
•	Automatic	shut-off	to	conserve	batteries
•	2.5V,	3.3V,	5V	target	vdds	available
•	CCS	Programmer	Control	Software
•	Free	software	updates	to	add	devices

ICD-U64
In-Circuit

Debugger/
Programmer

•	 Programs	all	Microchip	Flash	
devices

•	 In-circuit	programmer	uses	
modular	jack

•	 Powered	from	USB	bus
•	 Target	voltages	from	2V	to	5V
•	 Debug	capability	with	CCS	
PCW,	PCWH	and	PCWHD

•	 Standalone	utility	for	easy	
downloading

•	 Command-line	interface	for	
integration	with	other	software

•	 Supports	automatic	serial	
numbering

•	 Windows	&	linux	host	
supported

Over 30% FASTER than an ICD-U40!

USB Master
Development

Board

Create	embedded	devices	that	
function	as	the	master	of	a	USB	
bus	and	control	slave	devices.
This	development	board	
combines	the	PIC18F67J10	
device	with	the	Vinculum	VNC1L	
to	create:
•	 USB	Hub
•	 Read	and	Write	to	FAT	
formatted	Flash	drives

•	 Communicate	with	printers	and	
CDC	devices

•	 Utilize	HID	class	devices	in	
embedded	applications

DSP Analog
Development

Board

Board	designed	for	audio	signal	
processing	development.	Uses	
a	TI	audio	codec	chip	that	can	
acquire	data	from	microphone	
and	drive	headphones.
•	 Equipped	to	record,	process	
and	playback	audio	signals	up	
to	24	buts	at	44.1	Khz

•	 SD	card	reader	to	store	
recorded	audio	or	signal	data

•	 LCD	display	and	large	number	
of	digital	inputs	and	2	ADC	
inputs

•	 Learn	to	use	Direct	Memory	
Access	for	real-time	digital	
signal applications

PRIME8
Production
Programmer
In-circuit gang programmer
for Microchip Flash devices:
•	8	Selectable	Targets
•	2.5V,	3.3V,	5V	target	vdds	available
•	2MB	flash	that	can	store	up	to	4	

programs
•	SD	card	reader	to	load	targets	in	the	field
•	CCS	Programmer	Control	Software
•	LCD	screen	with	user	interface	for	
functions

Products for
Production &
Development

Development Kits

Kit name
Push

Button 3 LEDs POTS RS-232

I/O Pins
IDE

Compiler Special FeatureTotal Analog

PIC12F675   2 1 6 4 PCW Board	includes	the	14-pin	part	for	ICSP	and	
debugging	at	the	C	level

PIC12F683   2 1 6 4 PCW Similar	to	PIC12F675	with	twice	the	RMA	and	EE-
PROM,	3	timers	and	Capture/Compare/PWM	module

PIC16F877A   1 1 30 7 PCWH Basic	features	for	quick	and	easy	learning

PIC16F887   1 1 30 12 PCWH Enhanced	features	of	877A	family	with	additional	
I/O

PIC18F4520   1 1 30 11 PCWH Basic	features	that	require	more	RMA	and	Data	
EEPROM	space

PIC18F6722   1 2 48 11 PCW RS-232	Level	Converter	connected	to	the	C6/C7	
UART	and	G1/G2	UART

PIC18F8722   1 2 29 13 PCW External	Flash	and	RAM

PIC18F67J10   1 2 48 10 PCWH Basic	features	for	3.3V	applications

PIC24F   1 2 48 16 PCDIDE Runs	at	16	MIPS

PIC24H   1 2 48 18 PCDIDE Runs	at	40	MIPS	–Low	drive	current

DSP Starter   1 1 10 1 PCDIDE Real	ICE™	connector	and	a	Header	to	access	
the	available	GPIO,	Runs	at	30	MIPS

Development Kits come with
Prototyping Board(s), In-Circuit

Debugger/Programmer.
Kits also may be purchased without

software or individual boards.

Basic Kits
CCS	offers	a	wide	variety	of	all-inclusive	Development	Kits	that	bring	hardware	and	software	together	to	provide	an	innovative	
package	of	development	tools.		The	CCS	Development	Kit	allows	engineers	to	design,	develop,	implement,	and	test		applications	
directly	on	PIC®	MCUs	and	dsPIC®	DSCs.	Novices	and	experienced		developers	alike	save	both	time	and	money	with	the	CCS	
Development	Kits	without	a	need	to	buy	any	additional	equipment.

Exercise
Book

IDE
Compiler

Convenient
Carrying

Case

Prototyping
Board

Breadboard
Parts Box

In-Circuit
Debugger/

Programmer

9V
Power
Supply

Cables

Wireless Kits

Internet Connectivity Kits

Embedded Ethernet
On-board	ENC28J60	chip	and	MMC/SD	
card reader.
SPI	controlled,	10Mbit/sec,	full	duplex	
Ethernet	transceiver	IC.
Drivers	and	example	TCP/IP	code	
included.

3.3V Ethernet
Controller
The	PIC18F67J60	chip	offers	more	
memory	at	operating	voltages	of	2.0	
to	3.6V	and	is	10-BaseT	(10Mbps)	
compliant.

The	PIC18F67J60	can	run	at	speeds	
up	to	40	Mhz	and	Ethernet	transfers	
up	to	10	Mbit/sec	at	3V.

Example	programs	include	a	com-
plete	web	server,	e-mail	generator	
and	SD	Card	Read/Write.

Embedded Internet
Demonstrates	TCP/IP	and	Internet	connectivity.		Both	a	56k	
modem	and	10MB	Ethernet	connection	provide	access	to	
the Internet.

CCS	provides	a	port	of	Microchip’s	TCP/IP	stack	and	an	
API	for	developing	applications.

Examples	include	a	simple	web	server	to	allow	web	clients	
to	view	readings	from	around	the	world	and	a	SMTP/E-mail	
client	to	send	E-mails.

CCS Wireless-Ember
Zigbee™ Edition

Introduction	to	developing	ZigBee™	applications	for	the	Ember	EM260	
processor	with	PIC16	and	PIC18	devices.		Includes	full	communication	
protocols	with	the	Ember-ZigBee™stack.

The	minuscule	EM260	module	is	a	2.4	Ghz	IEEE	802.15.4	compliant	
transceiver	(3.3V	operation)	with	a	SPI	interface	and	Insight	Port	for	
advanced	network	debugging	with	Insight	Desktop.

Base	Station	board	combines	the	EM260	module	with	PIC18LF4620	
device	that	has	10	I/O	Pins	(3	may	be	Analog).		The	two	battery-
operated	Sensor	boards	combine	the	EM260	module	with	PIC16LF886	
device	that	has	5	I/O	Pins	(1	may	be	Analog).

RFID
Simple	read-only	and	read/write	transponder	to	demonstrate	multiple	
contactless	communication	possibilities.		A	manual	with	source	code	
examples	explains	how	to	use	the	drivers,	enabling	you	to	quickly	
develop	your	own	RFID	applications.

RFID	Prototype	Board	has	a	short	range	RFID	antenna	connected	to	
an	external	RFID	transceiver	IC.		The	RFID	prototype	board	connects	
to	external	components	using	a	four-wire	RS485	bus.		The	RS485	
connection	on	the	RFID	Prototype	board	is	to	accomodate	multi-drop/
multinode	network	of	RFID	units	and	other	RFID	related	components

Kit	also	includes:	RFID	Prototyping	Board,	RS485-to-RS232	Prototyp-
ing	Board,	Two	Read-Only	RFID	Transponders,	and	One	Read/Write	
RFID	Transponder	(Password	Protection	and	can	be	made	Read-Only	
or		Write-Only)

NEED NEW

Embedded Serial Busses
An	introduction	to	SPI	and	I2C	serial	busses,	with	no	wiring	needed.	The	board	has	two	nodes	and	shares	
common	components	between	different	devices,	but	maintain	their	own	potentiometer,	LEDs,	pushbutton	
and	RS-232	port	.

Node	1:		A	PIC16F877A	chip	is	connected	to	a	74HC165	chip	expanding	to	bank	of	8	DIP	switch	inputs,	
74HC595	chips	expands	output	to	display	information	on	three	7-Segment	LEDs,	and	a	serial	real-time	clock.
U		A	PIC16F876A	chip,	which	shares	an	I2C	temperature	sensor	and	a	serial	EEPROM	with	the	first	node.	
This	allows	for	the	investigation	into	data	collision,	while	accessing	shared	components.	Both	nodes	have.

USB
Has	a	PIC18F4550,	
an	external	USB	con-

troller,	and	a	function	
generator.		Applications	

for	a	simple	human	interface	
applications	and	a	high	speed	example	emulating	an	oscilloscope.		
PC	software	(with	source)	is	included	to	communicate	with	the	USB	
board.		Board	uses	the	PIC18F4550,	Microchip’s	PIC®	MCU	with	full	
speed	USB	peripheral.		

Example	programs	with	the	CCS	C	compiler	and	C	source	code	are	
provided:		How	to	configure	the	board	to	act	as	a	HID	device.		How	to	
configure	the	board	to	act	as	a	USB	device	that	accepts	and	receives	
bulk	mode	transfers.

USB	examples	are	also	compatible	with	the	Microchip	PIC16C7x5	
USB	peripheral,	which	CCS	also	provides	C	source	code	with	the	
CCS C compiler.

CAN Bus
Controller	Area	Network	
(CAN)	is	a	serial	bus	
system	for	a	network	of	
controllers. There are
four	nodes	that	are	able	

to	transmit	and	receive	
messages	from	the	network.	

CAN	Bus	offers	a	secure	communication	channel	to	exchange	up	to	8	
bytes	between	several	network	nodes.

Node	1:	The	PIC18F4580	includes	an	integrated	CAN	peripheral.
Node	2:		A	PIC16F876A	is	connected	to	a	MCP2515	(external	CAN	
peripheral	with	SPI	interface)
Node	3	&	4:		MCP25050s	(stand-alone	CAN	expanders)	pre-pro-
grammed	by	CCS	to	respond	to	specific	CAN	IDs.	

Nodes	1-3	have	a	potentiometer,	three	LEDs	and	three	pushbuttons	
connections.	Node	4	is	connected	to	a	7-segment	LED.

Robotics

An	introduction	into	
the	world	of	robots	for	
both	beginners	and	
advanced	robot	enthu-
siasts.		Included	de-
vices	allow	the	robot	to	
see, sense magnetic
fields,	speak,	accept	
external	commands,	
and	move..	fit	for	robot	
sumo	competition!

Each	device	has	its	own	chapter	in	the	included	exercise	book,	
describing	how	to	operate	and	use	its	drivers.		Bonus	chapters	on	
Real	Time	Operating	Systems	(RTOS)	and	advanced	project	ideas	
are	included.

The	electronic	compass	and	text-to-speech	converter	are	unique	
to	the	CCS		Robotics	Kit.		The	compass	allows	the	robot	to	move	
freely	and	still	know	its	heading	and	location.		The	text-to-speech	
converter	provides	a	more	personal	way	to	interact	with	people.

Kit	also	includes:	Controller	Board	and	TV	Remote

ACE Kit

The	ACE	Kit	is	the	perfect	solution	to	to	an	advanced	engineer’s	
development	needs.		This	kit	provides	multiple	accessories	
packaged	together	to	provide	diverse	
programming	situations.	

This	board	contains	connectors	and	expansions	to	debug	a	variety	of	
situations	before	the	final	target	platform	is	designed.	

The	ACE	Kit	utilizes	the	
CCS	Software	Prototyp-
ing	Board	-	A	PIC®	MCU	
designer’s	best	friend.

Kit	also	includes:	Software	
Prototyping	Board,	LCD/
Keypad	Set,	Experimenter’s	
Set,	USB	Add-On	(does	
NOT	include	PIC18F4550	
chip),	PIC16F877A	Repro-
grammable	Chip,	30	I/O	
Pins	(7	Can	Be	Analog),	and	
2-digit	7-segment	LED

Human Interface Kits

Bus Introductory Kits

ICD-U40 ICD-S40 MACH X LOAD-n-GO Prime 8

In-Circuit	Programming     

In-Circuit	Debugging     

ZIF	Socket — —  — —

PC Interface USB RS-232 USB USB USB

Power USB Target USB
USB,	4	AA	

Batteries	and	AC	
Adapter

USB	and	AC	
Adapter

Target	Boards 1 1 1 1 8

Programmers/
Debuggers

CCS	has	a	complete	line	of	Programmers	and	Debuggers	for	all	Microchip	PIC10,	PIC12,	PIC14,	PIC16,	PIC18,	PIC24	and	dsPIC®
devices.		The	entire	line	supports	in-circuit	debugging	at	the	C	level	with	any	IDE	compiler,	and	in-circuit	programming	with	the	IDE	
or	the	stand-alone	CCS	Programmer	Control	Software	for	all	Flash-supported	devices.

The	CCS	ICD	units	work	with	the	CCS	C	Aware	Real-Time	Debugger	for	detailed	debugging	information	at	the	C	level.			ICD-U40	is	
powered	by	the	USB	bus	and	can	be	modified	to	power	the	target	board	at	5V.		ICD-S40	communicates	via	a	RS232	serial	bus	and	
is	powered	by	the	target	board.		

The	Mach	X	Programmer	is	a	full-featured	device	programmer	with	a	standard	ICD	connector	and	a	40-pin	ZIF	socket	with	
advanced	ICSP	signal	routing	logic	to	accommodate	various	pin-outs	(8-40	pins).		All	Flash	memory,	One-Time	Programmable	
(OPT)	and	MCPxxxx(CAN	Bus	chips)	can	be	programmed	at	the	user	selectable	voltage	range	of	2V	to	5V.

