 ol-abe®
wSwW . pits & Bytes>

www.ccsinfo.com
262-522-6500 Newsletter

N N ¢
. h
‘ 5 . ‘
O Il /, ~ ;
) : >
%\:\\ a

INSIDE
THIS ISSUE:

November 2020

* Advanced Code Profiling

* Smart Phone Interface

Experience the Power of a PIC®
MCU in your USB Port! Imagine the
possibilities

* Bootloaders for Field
Up-Gradable Programs

Advanced Code Profiling

The CCS C Compilers have a unique feature called Data Streaming, where an ICD unitis used asa TTL to
USB translator. This can do printf()’s and getc()’s through the programming pins to the PC. Many of our users
have been using data streaming not only for debugging, but for diagnostics, factory test and calibration.

Using this same interface, the compilers have the ability to inject code to send data out this port at specific
points in the code. This information can include a timestamp, as well as, text data. This forms the
infrastructure of the code profiling feature in the IDE.

support@ccsinfo.com sales@ccsinfo.com

For example, in the code one needs to only add these lines:

#use profile(ICD)
#profile functions
and the compiler inserts a code to transmit a tag at the start and end of every function in the

program. When the profile tool is then run in the IDE, the following occurs:

Lj Open Project
Load Data

lﬂ Save Data

FP Statistics
| DataMessages

Call Sequence

“p Settings

Clear

- Print

‘% CCS Trace - Loaded MWV 302

EBX

MAIN()

init_hardware()

gather_inputs()

read_adc_pins()

get_filtered_adc_input

read_one_adc

get_pwm_setting()

safety_checks{)

check_ram

check_over_voltage

check_over_current

check_idle_conditions{)

check_rom_crc

check_data_EE_crc

check_end_of_life)

user_interface()

refresh_display

set_led_digit

led_translate

control_magnetron{)

control_fan_light

 check runnina conditions(}

Count Min Ave Max
1 143ms | 143ms | 143ms
30 39.7ms | 39.9ms | 40.0ms
30 15.9ms 19.0ms 19.2ms
120 g286us | 8331us | 856505
3a0 1364us | 1079us | 1643us
30 784us 7dus Fodus
a0 45.7ms | 44.2ms | 45.9ms
30 2096us | 360us | 2377us
30 10.3ms | 10.4ms | 10.6ms
a0 10,3ms | 10.4ms | 10.6ms
15 78dus Fadus Fadus
30 262405 | Z6d44us | 2904us
a0 23630s | 2372us | Z642us
30 78dus Fadus Fadus
29 37.6ms | 37.8ms | 37.9ms
29 20.5ms | 18.8ms | 20.8ms
117 J956us | 3972us | 56.6ms
117 15310us | 221%9us | 54.0ms
29 10.7ms | 10.8ms | 11.0ms
29 F853%s | 7887us | 8118us
15 Todus | FB4us | Todus ¥

oy

The function tags inserted can optionally include the actual parameters and in the software to get a
sequence of events as shown here:

‘% CCS Trace - Loaded MWV302

RESET, Cause: Marmal power up
MAING)
init_hardware)
gather_inputs()
read_adc_pins()
il Save Data get_Ffiltered adc_input{ 1, 33
tead_one_adc{ 1)
tead_one_adc{ 1)
dll Fhishis tead_one_adc{ 1)
get_filkered_adc_jinput{ 4, 33
tead_one_adcl 4)
tead_one_adc(4)
i tead_one_adcl 4)
i Call Sequence get_pwm_setting()
safety_checks()
“p Settings user_jnterfacel)
refresh_display '#')
set_led_digik{ 1, '1")
led_translatel '1')
set_led_digit{ 2, '1")
led_translatel '1')
set_led_digikl 3, '3)
led_translatel '3')
set_|ed_digikl 4, '0")
led_translatel '0')
conkrol_magretront)
conkral_fan_light{ 0, 0]
gather_inputsi)
read_adc_pins()
get_filkered_adc_jnput{ 1, 3)
tead_one_adc{ 1)

ﬁ Open Project

Load Data

|| DataMessages

The compiler also allows user defined areas of code to be timed. The user can specify a start and
stop event and give the timer a name. A profileout() call is used with text starts with START, followed
by something and then another profileout with STOP, and the same something will cause a timer to
be created in the software. For example:

profileout(“Start interpolation algorithm”);
y2=((x2-x1)*(y3-y1))/(x3-x1)+y1;
profileout(“Stop interpolation algorithm”);

Notice the 4th line down:

‘% CCS Trace - Loaded MWV 302 QE

[22 Open Project Count .| Min Ave Max &
MAIN() =
Load Data init_hardware() 1 143ms | 143ms | 143ms
lﬂ R gather_inputs() 27 41.4ms | 41.6ms | 41.7ms
interpolation algorithm 27 929us | 940us | 1208us
read_adc_pins() 27 18.9ms | 19.0ms | 19.2ms
PP statistics | get_filtered_adc_input 108 | §286us | §328us BSASUs
S DataMessages read_one_adc 324 1364us | 1047us | 54.0ms
' get_pwm_setting() 27 7adus | TEdus | TEdus
= call Sequence safety_checks() 27 45.7ms | 44.0ms | 45.9ms
check_ram 27 2093us | 21095 | 2377us
n SEtHings check_over_voltage 27 10.3ms | 10.4ms | 10.6ms
check_over_current 27 10.3ms | 10.4ms | 10.6ms
Clear check_idle_conditions() 14 Tedus | TBdus | FBdus
check rom_crc 27 2624us | A93us | 2904us
» Print check_data_EE_crc 57 | 2363us | 2ITdUs | 264ZUS
E Exit check _end of life() 27 7ad4us | TEdus | Tddus
user_interface() 27 37.6ms | 37.8ms | 37.9ms
m refresh_display 27 20.5ms | 20.6ms | 20.8ms
set_led_digit 108 39560s | 446205 | S6.AMS
. led_translate 103 1310us | 1804us | S54.0ms
6 control_magnetron() 27 10.7ms | 839%w0us | 11.0ms
control fan liaht 27 | 783%s | TEAO0us | Blldus ¥

profileout() can also be used to output the values of variables real-time. For example:
profileout(“value=", value); /I Sends a variable and a title for the variable
profileout(value); // Sends a variable and the title is the variable name

An example screen showing the profileout() data:

‘& CCS Trace - Loaded MWY 302 E@@

Lj Open Project ADC reading - Mag Current 1 ~
ADC reading - Feedback z
Load Data PWM setting 0
H Save Data System stakte 5
check_ram.start 3z
check_ram.stop 255
aly Statistics check_over_woltage.an 1
p— J check _over_current.an i
check_rom_crc.start 1]
Call Sequence check_rom_crc.stop 255
check_rom_crc.crc 132
fp Settings check_data EE_crc.start 1]
check_data_FE_crc.stop A3
Clear check_data_EE_crc.crc 131
refresh_display.display_string ¢!
» Print setk_led digit.position 4
E Exit set_led_digit.value 0’
led_translate.ascii 0
w Input buffer "
» Display 11:30'
control_fan_light_ light 1]
6 control_fan_light.Fan 1]
w

The compiler can also be set up to insert tags at every branch in the program or between specific
points to help with full path testing. If users own an IDE compiler and a CCS ICD-U64 or ICD-U80,
this is a feature that can help users a great deal and is very easy to get going.

<ww> COMPILER
FEATURE FOCUS

Do you know the CCS C Compiler has an entire library of
functions used to interface your PIC to Bluetooth?

SN
v

PICE MCU
board =

(Exampie PICE
‘target hoard)

The PIC& MCU can control
what is seen on the smart
device and read its input

Use the EZApp library to quickly create a wireless sensor or controller on a PIC®
MCU that may be viewed and displayed on a mobile device using Bluetooth®
included in CCS IDE Compilers. Drivers, examples and development boards for the
Microchip RN-4020 Bluetooth® module.

Bootloaders for Field Up-Gradable Programs

One of the most difficult things to deal with is upgrading a products firmware to fix a bug for products

that are already in the field. It can be expensive and time consuming to do a recall of the products or

send technicians to update the firmware. One option is to add a bootloader to the product. By using a
bootloader it is possible to update a products firmware automatically or by the end user. One of the easiest
type of bootloader to implement is a serial bootloader.

A serial bootloader uses a serial connection, RS232 for example, to transfer the new firmware from a PC
to the product, which is then programmed onto the product by a small program that runs on the device.
To aid in quickly developing a serial bootloader, the CCS C Compiler has bootloader code that can be
included in your project, as well has a PC program that can be used to transfer the firmware to product.

The CCS C Compiler provides the following bootloader examples, ex_bootloader.c and ex_pcd_
bootloader.c. The first is an example of a serial bootloader for PIC16 and PIC18 devices, PCM and PCH
compilers, and the second is an example of a serial bootloader for PIC24, dsPIC30 and dsPIC33 devices,
PCD compiler. Both are an example of a standalone bootloader. Standalone bootloaders are small
programs that run on the device that are responsible for both receiving the firmware and for programming
it onto the device. In general, standalone bootloaders do not require the application for them to work. The
size of a serial bootloader program depends on the device they are being used on, for example the CCS
serial bootloader for PIC18 devices use 1280 instructions or 2560 bytes of ROM and always remains at the
same location in ROM. Some PIC® MCUs allow you to specially code protect the bootloader area in ROM.
Additionally the CCS C Compiler provides the following bootloader applications, ex_bootload.c and
ex_pcd_bootload.c. Both are examples of applications that can be bootloaded onto a device using the

6

ex_bootloader.c and ex_pcd_bootloader.c bootloaders. The key difference between a standard application
and one that can be bootloaded is that the bootloadable application reserves an area of ROM for the
bootloader. Frequently that area includes the reset and interrupt vectors so the application will use an
alternate area that the bootloader can link to. In general #including the same bootloader.h file that the
bootloader uses is all that needs to be done to build an application that is compatible with the bootloader.

Here is a memory map for a low memory bootloader:

PIC 18F45K22

Cx 0000
Bootloader GOTO
0x0008
Bootloader ISR
Bootloader
Oxd4FF
Jx0500
Application GOTO
0x0508
Application ISR
Application
0=7FFF

A key consideration for bootloaders is deciding when to bootload. The bootloader program starts when
the chip starts. If there is no application program in memory then it goes into bootload mode. That is the
easy case. For reloading, a button could be used, for example hold that button down, power up and the
bootloader sees the button down and starts the loading process. The application itself could trigger a

bootload by writing a value to EEPROM and then resetting, the bootloader would see the special value and
could force a bootload.

Finally CCS provides a PC program, CCS Bootloader, that can be used to transfer firmware
(a .hexfile) from a PC to a device that is running a CCS C Compiler bootloader. The CCS Booloader
program is a command line utility that may be distributed as part of the user’s end product.

bootloader.exe PORT=COMA BAUD=11520@ ex_bootload.hex

Downloading ex_bootload.hex
e

CCSBootloader V1.6

It should be noted that the CCS IDE new project Wizard has an option to create a bootloader for you.

CCS has done bootloaders that work over USB, 12C, CAN, SD cards, USB Flash sticks, TCP/IP and HTTP.
Contact us if you need help with your bootloader.

Now Easter Than Ever!

ICD-USO

*Accelerated Programming Speed
*Integrated Vdd generator to supply

1.5V-5.5V to target
*Software controlled settings power
the target - No jumpers to move

*Supports all Microchip PIC® MCUs
and dsPIC® DSCs

PIC® MCU is a registered trademark of Microchip Technology Inc.

COVID-19 RESPONSE

During this time of global uncertainty and change, we want to assure you that we are taking every
precaution to ensure that we can safely support our customers during this time.

Despite these challenges, CCS staff is continuing to provide technical support, as well as processing
orders. It is essential customers have the tools they need to provide the development of existing or
new products that may be necessary in the fight of Covid-19.

Many of our existing customers are having to work from home and we want to remind everyone of
our Software Licensing Agreement. We pre-register all compilers in a user’s name. You can install
your compiler on your home PC and laptops. If you do not have access to the registration files and
installer, contact customer service for assistance.

Most importantly, as we work together in this unique and rapidly changing environment, we do so with
confidence that we will overcome this challenge. Until then, we hold our enduring commitment to the
health and well-being of our employees and customers.

Please let us know how we can help you. Stay healthy.

More than 25 years experience in
software, firmware and hardware "-
design and over 500 custom embedded

C design projects using a Microchip “-
PIC® MCU device. We are a recognized
Microchip Third-Party Partner.

Follow Us'

