
TECH NOTE: Notifications From the Serial Library on Data Reception

TECH NOTE: Variables That Seem to Change on Their Own

SPECIAL OFFERS: Fall Discount

August 2020

Email:
support@ccsinfo.com
sales@ccsinfo.com
Ph: 262-522-6500

New Compiler Versions
>Downloads>Compiler Software

Easy License Renewal
>Support>Renewalswww.ccsinfo.com

2

1. Notifications From the Serial Library on Data Reception

The CCS C Compiler provides an extremely flexibly serial library; it has the ability to use the hardware
peripheral or bit bang the pins, to control and monitor flow control, to specify parity, to use a one wire bus,
and more. One feature it has is the ability to specify a receive buffer, and the library will automatically
use the receive interrupt to buffer incoming characters. Here is an example of creating a stream called
STREAM_UART1 on the UART1 hardware peripheral with a 16 byte receive buffer:

 #use rs232(UART1, baud=9600, receive_buffer=16, stream=STREAM_UART1)

Essentially the stream works like a file handle that can be used with C standard I/O functions like fputc,
fgetc, etc. Using the stream created above, here is a simple loop that echoes data received on the UART
back to the UART:

 while (kbhit(STREAM_UART1))
 {
 fputc(fgetc(STREAM_UART1), STREAM_UART1);
 }

This example shows the flexibility of the #use rs232() library provided by CCS. The ‘receive_buffer’ option
creates an interrupt on the UART receive to buffer incoming characters and kbhit() and fgetc() accesses
that buffer, but if the ‘receive_buffer’ was removed from the #use rs232(), then kbhit() and fgetc() would
instead check for any received data being held by the UART.

The ‘receive_buffer’ example as shown above has no way of notifying the users software that data
is available, except by polling the receive buffer status with kbhit(). The 5.095 version of the CCS C
Compiler adds a new option called ‘callback’ that allows the user to specify a function to be called when
the receive buffer goes from empty to not empty. This could be used to mark a semaphore or enable a
routine to start parsing data in the receive buffer. Here is an example of adding this new option:
 #use rs232(UART1, baud=9600, receive_buffer=16, stream=STREAM_UART1, \
 callback=Uart1On

As stated earlier, this example will call the ‘Uart1OnRx’ function whenever the receive buffer goes from
empty to not empty. Here is how the earlier echo example can be changed to use an RTOS with a
semaphore to mark when the receive buffer is ready:
 #use rtos(timer=0)

 int uart_sem = 0;

 static void Uart1OnRx(void) {
 rtos_signal(uart_sem);
 }

 #task(rate=10ms)
 static void Uart1Task(void) {
 for(;;) {
 rtos_wait(uart_sem);

 while(kbhit(STREAM_UART1)) {
 fputc(fgetc(STREAM_UART1), STREAM_UART1);
 }
 }
 }

3

Alternatively, a function for parsing data in the receive buffer can be queued for execution with the timeouts
library:
 #include <timeouts.c>

 void Uart1OnxTimeout(void* pArgs) {
 while(kbhit(STREAM_UART1)) {
 putc(getc(STREAM_UART1), STREAM_UART1);
 }
 }

 static void Uart1OnRx(void) {
 TimeoutsAdd(Uart1OnxTimeout, NULL, 0);
 }

4

Variables That Seem to Change on Their Own
CCS C Compiler Technical Note

Software developers will sometimes notice a variable has an unbelievable value. In a debugging
situation, the value is checked right after it is written, and the value is good. If every place it is written
is checked, then it appears as though somehow the variable value is changing not as a result of
intentional C code. This application note covers some basic techniques to locate the problem.

1. The first step is to open the .SYM file and locate the variable in question. This memory map shows
where the variable sits in relation to other variables. The compiler will share the same memory
location between variables that should not be active at the same time. For example, the main program
calls function A and it calls function B. The A function has a local variable called LA and B has a local
called LB. Because function A and function B are not running at the same time, the compiler might put
LA and LB in the same memory location.

Check the other variables in the same memory location and confirm those variables are not active at
the same time. Remember that local variables that are not marked static may have garbage in them
each time the function starts. In the rare case the compiler places two variables that could be active at
the same time in the same memory location report it to CCS Support.

2. Check nearby variables, especially arrays. An index out of range could cause accessing the array
to overwrite another variable. If re-arranging your variables or otherwise changing the code makes a
problem come and go, then look at how your problem variable moves in the memory map.

3. Look at the wrong data and see if you recognize it as belonging somewhere else. A bad pointer
could place good data in the wrong location.

4. If this is a multi-byte data item and it is accessed inside and outside a interrupt function, then make
sure your code logic has protection against the variable being partially updated when an interrupt
happens.

5. Check the chip errata. Sometimes chips have bad behavior at certain voltages, temperatures or
clock speeds.

6. Check to see if your chip allows for data breakpoints. If so, and your application is debugger
capable, you should be able to find the problem using the debugger. Set a data breakpoint at the
location of the problem variable. Run the program and each time it breaks, check the variable value.
When it is bad, look to see where in the code you are. If you see something like the following:
 buffer[bptr] = c;
Then it would seem bptr is out of range. Remember that in C, a ten byte array can not have an index
over 9.

7. If none of the above solves the problem, you will need to roll up your sleeves and debug the
problem more manually. To start, you need some way to identify the variable as being bad. Say the
variable is temp and for now the expected value is over 68. When it is bad, it seems to be 0.

A. Write a function something like this:

5

char diag_tag=’ ‘;

void check(char tag) {
 if(temp<68)
 if(diag_tag!=’ ‘)
 diag_tag=tag;
}

B. Add throughout your code in places where temp should be valid (the start of main
 would probably not be such a place unless you init temp to say 68) the following:

 check(‘A’);

 In each place change the letter (B, C,...) so each call is unique.

C. Run the code and after the variable goes bad check diag_tag to find out where
 it was first discovered. You will need some way to output diag_tag if you are not
 using the debugger.

 When the location of first error is found, look back in the code execution path to
 find where check() was previously called (a good call). Then add more check calls
 between those two points.

D. Repeat step C until you locate the line that causes the variable corruption.

out

C Workshop Compiler
Limited to 13 Devices with the IDE

$69

$99
Sku: 52204-1534

 » Supports 2.0V to 5V targets

 » PC or Flash Drive Download

 » Touchscreen Controls

 » Ability to program PIC32 Family

 » Can supply up to 200 mA to each target

 » Green/Pass, Red/Fail simulated LEDs for each target

6

During this time of global uncertainty and change, we want to assure you that we are taking every
precaution to ensure that we can safely support our customers during this time.

Despite these challenges, CCS staff is continuing to provide technical support, as well as processing
orders. It is essential customers have the tools they need to provide the development of existing or
new products that may be necessary in the fight of Covid-19.

Many of our existing customers are having to work from home and we want to remind everyone of
our Software Licensing Agreement. We pre-register all compilers in a user’s name. You can install
your compiler on your home PC and laptops. If you do not have access to the registration files and
installer, contact customer service for assistance.

CCS wants to help further embedded development by customers, and is offering a discount on any
new compilers or maintenance plan purchases. The customers that need development boards, and
programmers, we are offering Free Ground shipping (to the U.S.48) so you can get the tools you
need to continue working from home.

Most importantly, as we work together in this unique and rapidly changing environment, we do so with
confidence that we will overcome this challenge. Until then, we hold our enduring commitment to the
health and well-being of our employees and customers Please let us know how we can help you.
Stay healthy.

Follow Us!

More than 25 years experience in
software, firmware and hardware
design and over 500 custom embedded
C design projects using a Microchip
PIC® MCU device. We are a recognized
Microchip Third-Party Partner.

 www.ccsinfo.com

COVID-19 RESPONSE

Fall Back Into Programming with a C Compiler

Add an Additional User to any IDE
license and receive 50% the list price!

 Use Code:

Fall25

Half Price on
Additional User License

